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sharp-package sharp: Stability-enHanced Approaches using Resampling Procedures

Description

In stability selection and consensus clustering, resampling techniques are used to enhance the relia-
bility of the results. In this package, hyper-parameters are calibrated by maximising model stability,
which is measured under the null hypothesis that all selection (or co-membership) probabilities are
identical. Functions are readily implemented for the use of LASSO regression, sparse PCA, sparse
(group) PLS or graphical LASSO in stability selection, and hierarchical clustering, partitioning
around medoids, K means or Gaussian mixture models in consensus clustering.
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Details

Package: sharp
Type: Package
Version: 1.4.6
Date: 2024-02-03
License: GPL (>= 3)
Maintainer: Barbara Bodinier <barbara.bodinier@gmail.com>

References
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Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(5, 5, 5, 5))

## Regression models
# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50)

# Stability selection
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
CalibrationPlot(stab)
summary(stab)
SelectedVariables(stab)

## Graphical models
# Data simulation
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, topology = "scale-free")

https://doi.org/10.1093/bioinformatics/btad635
https://doi.org/10.1093/jrsssc/qlad058
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1023/A%3A1023949509487
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# Stability selection
stab <- GraphicalModel(xdata = simul$data)
CalibrationPlot(stab)
summary(stab)
plot(stab)

## PCA models
if (requireNamespace("elasticnet", quietly = TRUE)) {

# Data simulation
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4))
plot(simul)

# Stability selection
stab <- BiSelection(
xdata = simul$data,
ncomp = 3,
implementation = SparsePCA

)
CalibrationPlot(stab)
summary(stab)
SelectedVariables(stab)

}

## PLS models
if (requireNamespace("sgPLS", quietly = TRUE)) {

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(10, 20, 30), family = "gaussian")

# Stability selection
stab <- BiSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", ncomp = 3,
implementation = SparsePLS

)
CalibrationPlot(stab)
summary(stab)
plot(stab)

}

par(oldpar)

AggregatedEffects Summarised coefficients conditionally on selection
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Description

Computes descriptive statistics (defined by FUN) for coefficients of the (calibrated) models condi-
tionally on selection across resampling iterations.

Usage

AggregatedEffects(
stability,
lambda_id = NULL,
side = "X",
comp = 1,
FUN = stats::median,
...

)

Arguments

stability output of VariableSelection or BiSelection.

lambda_id parameter ID with respect to the grid Lambda. If NULL, aggregated coefficients
across the models run with the calibrated parameter are returned.

side character string indicating if coefficients of predictors (side="X") or outcomes
(side="Y") should be returned. Only applicable to PLS models.

comp component ID. Only applicable to PLS models.

FUN function to use to aggregate coefficients of visited models over resampling iter-
ations. Recommended functions include median or mean.

... additional arguments to be passed to FUN.

Value

A matrix of summarised coefficients conditionally on selection across resampling iterations. Miss-
ing values (NA) are returned for variables that are never selected.

See Also

VariableSelection, BiSelection, Refit

Examples

# Example with univariate outcome
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "gaussian")
median_betas <- AggregatedEffects(stab)

# Comparison with refitted model
refitted <- Refit(xdata = simul$xdata, ydata = simul$ydata, stability = stab)
refitted_betas <- coef(refitted)[-1, 1]
plot(median_betas[names(refitted_betas), ], refitted_betas,
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panel.first = abline(0, 1, lty = 2)
)

# Extracting mean betas conditionally on selection
mean_betas <- AggregatedEffects(stab, FUN = mean)
plot(median_betas, mean_betas)

# Regression with multivariate outcomes
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, q = 2, family = "gaussian")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "mgaussian")
median_betas <- AggregatedEffects(stab)
dim(median_betas)

# Sparse PLS with multivariate outcome
if (requireNamespace("sgPLS", quietly = TRUE)) {

set.seed(1)
simul <- SimulateRegression(n = 50, pk = 15, q = 3, family = "gaussian")
x <- simul$xdata
y <- simul$ydata
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = seq_len(ncol(x) - 1),
implementation = SparsePLS

)
median_betas <- AggregatedEffects(stab)
dim(median_betas)
median_betas <- AggregatedEffects(stab, side = "Y")
dim(median_betas)

}

ArgmaxId Calibrated hyper-parameter(s)

Description

Extracts the calibrated hyper-parameters (or their indices for ArgmaxId) with respect to the grids
provided in Lambda and pi_list in argument stability.

Usage

ArgmaxId(stability = NULL, S = NULL)

Argmax(stability)
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Arguments

stability output of VariableSelection or GraphicalModel.

S matrix of stability scores obtained with different combinations of parameters
where rows correspond to different values of the parameter controlling the level
of sparsity in the underlying feature selection algorithm and columns correspond
to different values of the threshold in selection proportions. If S=NULL, argument
stability must be provided.

Value

A matrix of hyper-parameters (Argmax) or indices (ArgmaxId). For multi-block graphical models,
rows correspond to different blocks.

See Also

VariableSelection, GraphicalModel

Examples

# Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = 20)

# Stability selection
stab <- GraphicalModel(xdata = simul$data)

# Extracting calibrated hyper-parameters
Argmax(stab)

# Extracting calibrated hyper-parameters IDs
ids <- ArgmaxId(stab)
ids

# Relationship between the two functions
stab$Lambda[ids[1], 1]
stab$params$pi_list[ids[2]]

BiSelection Stability selection of predictors and/or outcomes

Description

Performs stability selection for dimensionality reduction. The underlying variable selection algo-
rithm (e.g. sparse PLS) is run with different combinations of parameters controlling the sparsity
(e.g. number of selected variables per component) and thresholds in selection proportions. These
hyper-parameters are jointly calibrated by maximisation of the stability score.
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Usage

BiSelection(
xdata,
ydata = NULL,
group_x = NULL,
group_y = NULL,
LambdaX = NULL,
LambdaY = NULL,
AlphaX = NULL,
AlphaY = NULL,
ncomp = 1,
scale = TRUE,
pi_list = seq(0.01, 0.99, by = 0.01),
K = 100,
tau = 0.5,
seed = 1,
n_cat = NULL,
family = "gaussian",
implementation = SparsePLS,
resampling = "subsampling",
cpss = FALSE,
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
n_cores = 1,
output_data = FALSE,
verbose = TRUE,
beep = NULL,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group. Only used for models with group
penalisation (e.g. implementation=GroupPLS or implementation=SparseGroupPLS).

group_y optional vector encoding the grouping structure among outcomes. This argu-
ment indicates the number of variables in each group. Only used if implementation=GroupPLS
or implementation=SparseGroupPLS.

LambdaX matrix of parameters controlling the number of selected variables (for sparse
PCA/PLS) or groups (for group and sparse group PLS) in X.

LambdaY matrix of parameters controlling the number of selected variables (for sparse
PLS) or groups (for group or sparse group PLS) in Y. Only used if family="gaussian".
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AlphaX matrix of parameters controlling the level of sparsity within groups in X. Only
used if implementation=SparseGroupPLS.

AlphaY matrix of parameters controlling the level of sparsity within groups in X. Only
used if implementation=SparseGroupPLS and family="gaussian".

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one).

pi_list vector of thresholds in selection proportions. If n_cat=NULL or n_cat=2, these
values must be >0 and <1. If n_cat=3, these values must be >0.5 and <1.

K number of resampling iterations.

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

seed value of the seed to initialise the random number generator and ensure repro-
ducibility of the results (see set.seed).

n_cat computation options for the stability score. Default is NULL to use the score
based on a z test. Other possible values are 2 or 3 to use the score based on the
negative log-likelihood.

family type of PLS model. This parameter must be set to family="gaussian" for con-
tinuous outcomes, or to family="binomial" for categorical outcomes. Only
used if ydata is provided.

implementation function to use for feature selection. Possible functions are: SparsePCA, SparsePLS,
GroupPLS, SparseGroupPLS.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

cpss logical indicating if complementary pair stability selection should be done. For
this, the algorithm is applied on two non-overlapping subsets of half of the obser-
vations. A feature is considered as selected if it is selected for both subsamples.
With this method, the data is split K/2 times (K models are fitted). Only used if
PFER_method="MB".

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

n_cores number of cores to use for parallel computing (see argument workers in multisession).
Using n_cores>1 is only supported with optimisation="grid_search".
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output_data logical indicating if the input datasets xdata and ydata should be included in
the output.

verbose logical indicating if a loading bar and messages should be printed.

beep sound indicating the end of the run. Possible values are: NULL (no sound) or an
integer between 1 and 11 (see argument sound in beep).

... additional parameters passed to the functions provided in implementation or
resampling.

Details

In stability selection, a feature selection algorithm is fitted on K subsamples (or bootstrap samples)
of the data with different parameters controlling the sparsity (LambdaX, LambdaY, AlphaX, and/or
AlphaY). For a given (set of) sparsity parameter(s), the proportion out of the K models in which
each feature is selected is calculated. Features with selection proportions above a threshold pi are
considered stably selected. The stability selection model is controlled by the sparsity parameter(s)
(denoted by λ) for the underlying algorithm, and the threshold in selection proportion:

Vλ,π = {j : pλ(j) ≥ π}
For sparse and sparse group dimensionality reduction, "feature" refers to variable (variable selection
model). For group PLS, "feature" refers to group (group selection model). For (sparse) group PLS,
groups need to be defined a priori and specified in arguments group_x and/or group_y.

These parameters can be calibrated by maximisation of a stability score (see ConsensusScore if
n_cat=NULL or StabilityScore otherwise) calculated under the null hypothesis of equiprobability
of selection.

It is strongly recommended to examine the calibration plot carefully to check that the grids of pa-
rameters Lambda and pi_list do not restrict the calibration to a region that would not include the
global maximum (see CalibrationPlot). In particular, the grid Lambda may need to be extended
when the maximum stability is observed on the left or right edges of the calibration heatmap. In
some instances, multiple peaks of stability score can be observed. Simulation studies suggest that
the peak corresponding to the largest number of selected features tend to give better selection perfor-
mances. This is not necessarily the highest peak (which is automatically retained by the functions
in this package). The user can decide to manually choose another peak.

To control the expected number of False Positives (Per Family Error Rate) in the results, a threshold
PFER_thr can be specified. The optimisation problem is then constrained to sets of parameters that
generate models with an upper-bound in PFER below PFER_thr (see Meinshausen and Bühlmann
(2010) and Shah and Samworth (2013)).

Possible resampling procedures include defining (i) K subsamples of a proportion tau of the ob-
servations, (ii) K bootstrap samples with the full sample size (obtained with replacement), and (iii)
K/2 splits of the data in half for complementary pair stability selection (see arguments resampling
and cpss). In complementary pair stability selection, a feature is considered selected at a given
resampling iteration if it is selected in the two complementary subsamples.

For categorical outcomes (argument family is "binomial" or "multinomial"), the proportions of
observations from each category in all subsamples or bootstrap samples are the same as in the full
sample.

To ensure reproducibility of the results, the starting number of the random number generator is set
to seed.
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For parallelisation, stability selection with different sets of parameters can be run on n_cores cores.
Using n_cores > 1 creates a multisession.

Value

An object of class bi_selection. A list with:

summary a matrix of the best stability scores and corresponding parameters controlling
the level of sparsity in the underlying algorithm for different numbers of com-
ponents. Possible columns include: comp (component index), nx (number of
predictors to include, parameter of the underlying algorithm), alphax (sparsity
within the predictor groups, parameter of the underlying algorithm), pix (thresh-
old in selection proportion for predictors), ny (number of outcomes to include,
parameter of the underlying algorithm), alphay (sparsity within the outcome
groups, parameter of the underlying algorithm), piy (threshold in selection pro-
portion for outcomes), S (stability score). Columns that are not relevant to the
model are not reported (e.g. alpha_x and alpha_y are not returned for sparse
PLS models).

summary_full a matrix of the best stability scores for different combinations of parameters
controlling the sparsity and components.

selectedX a binary matrix encoding stably selected predictors.

selpropX a matrix of calibrated selection proportions for predictors.

selectedY a binary matrix encoding stably selected outcomes. Only returned for PLS mod-
els.

selpropY a matrix of calibrated selection proportions for outcomes. Only returned for PLS
models.

selected a binary matrix encoding stable relationships between predictor and outcome
variables. Only returned for PLS models.

selectedX_full a binary matrix encoding stably selected predictors.

selpropX_full a matrix of selection proportions for predictors.

selectedY_full a binary matrix encoding stably selected outcomes. Only returned for PLS mod-
els.

selpropY_full a matrix of selection proportions for outcomes. Only returned for PLS models.

coefX an array of estimated loadings coefficients for the different components (rows),
for the predictors (columns), as obtained across the K visited models (along the
third dimension).

coefY an array of estimated loadings coefficients for the different components (rows),
for the outcomes (columns), as obtained across the K visited models (along the
third dimension). Only returned for PLS models.

method a list with type="bi_selection" and values used for arguments implementation,
family, scale, resampling, cpss and PFER_method.

params a list with values used for arguments K, group_x, group_y, LambdaX, LambdaY,
AlphaX, AlphaY, pi_list, tau, n_cat, pk, n (number of observations), PFER_thr,
FDP_thr and seed. The datasets xdata and ydata are also included if output_data=TRUE.
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The rows of summary and columns of selectedX, selectedY, selpropX, selpropY, selected,
coefX and coefY are ordered in the same way and correspond to components and parameter values
stored in summary. The rows of summary_full and columns of selectedX_full, selectedY_full,
selpropX_full and selpropY_full are ordered in the same way and correspond to components
and parameter values stored in summary_full.

References

Bodinier B, Filippi S, Nøst TH, Chiquet J, Chadeau-Hyam M (2023). “Automated calibration for
stability selection in penalised regression and graphical models.” Journal of the Royal Statisti-
cal Society Series C: Applied Statistics, qlad058. ISSN 0035-9254, doi:10.1093/jrsssc/qlad058,
https://academic.oup.com/jrsssc/advance-article-pdf/doi/10.1093/jrsssc/qlad058/50878777/qlad058.pdf.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi:10.1111/j.14679868.2011.01034.x.

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi:10.1111/j.14679868.2010.00740.x.

Liquet B, de Micheaux PL, Hejblum BP, Thiébaut R (2016). “Group and sparse group partial least
square approaches applied in genomics context.” Bioinformatics, 32(1), 35-42. ISSN 1367-4803,
doi:10.1093/bioinformatics/btv535.

KA LC, Rossouw D, Robert-Granié C, Besse P (2008). “A sparse PLS for variable selection when
integrating omics data.” Stat Appl Genet Mol Biol, 7(1), Article 35. ISSN 1544-6115, doi:10.2202/
15446115.1390.

Shen H, Huang JZ (2008). “Sparse principal component analysis via regularized low rank matrix ap-
proximation.” Journal of Multivariate Analysis, 99(6), 1015-1034. ISSN 0047-259X, doi:10.1016/
j.jmva.2007.06.007.

Zou H, Hastie T, Tibshirani R (2006). “Sparse Principal Component Analysis.” Journal of Compu-
tational and Graphical Statistics, 15(2), 265-286. doi:10.1198/106186006X113430.

See Also

SparsePCA, SparsePLS, GroupPLS, SparseGroupPLS, VariableSelection, Resample, StabilityScore

Other stability functions: Clustering(), GraphicalModel(), StructuralModel(), VariableSelection()

Examples

if (requireNamespace("sgPLS", quietly = TRUE)) {
oldpar <- par(no.readonly = TRUE)
par(mar = c(12, 5, 1, 1))

## Sparse Principal Component Analysis

# Data simulation
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4))

# sPCA: sparsity on X (unsupervised)
stab <- BiSelection(

https://doi.org/10.1093/jrsssc/qlad058
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1093/bioinformatics/btv535
https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1198/106186006X113430
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xdata = simul$data,
ncomp = 2,
LambdaX = seq_len(ncol(simul$data) - 1),
implementation = SparsePCA

)
print(stab)

# Calibration plot
CalibrationPlot(stab)

# Visualisation of the results
summary(stab)
plot(stab)
SelectedVariables(stab)

## Sparse (Group) Partial Least Squares

# Data simulation (continuous outcomes)
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 15, q = 3, family = "gaussian")
x <- simul$xdata
y <- simul$ydata

# sPLS: sparsity on X
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = seq_len(ncol(x) - 1),
implementation = SparsePLS

)
CalibrationPlot(stab)
summary(stab)
plot(stab)

# sPLS: sparsity on both X and Y
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = seq_len(ncol(x) - 1),
LambdaY = seq_len(ncol(y) - 1),
implementation = SparsePLS,
n_cat = 2

)
CalibrationPlot(stab)
summary(stab)
plot(stab)

# sgPLS: sparsity on X
stab <- BiSelection(

xdata = x, ydata = y, K = 10,
group_x = c(2, 8, 5),
family = "gaussian", ncomp = 3,
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LambdaX = seq_len(2), AlphaX = seq(0.1, 0.9, by = 0.1),
implementation = SparseGroupPLS

)
CalibrationPlot(stab)
summary(stab)

par(oldpar)
}

BlockLambdaGrid Multi-block grid

Description

Generates a matrix of parameters controlling the sparsity of the underlying selection algorithm for
multi-block calibration.

Usage

BlockLambdaGrid(Lambda, lambda_other_blocks = NULL)

Arguments

Lambda vector or matrix of penalty parameters.
lambda_other_blocks

optional vector of penalty parameters to use for other blocks in the iterative
multi-block procedure.

Value

A list with:

Lambda a matrix of (block-specific) penalty parameters. In multi-block stability selec-
tion, rows correspond to sets of penalty parameters and columns correspond to
different blocks.

Sequential_template

logical matrix encoding the type of procedure for data with multiple blocks in
stability selection graphical modelling. For multi-block estimation, each block
is calibrated separately while others blocks are weakly penalised (TRUE only
for the block currently being calibrated and FALSE for other blocks). Other ap-
proaches with joint calibration of the blocks are allowed (all entries are set to
TRUE).

See Also

GraphicalModel
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Examples

# Multi-block grid
Lambda <- matrix(

c(
0.8, 0.6, 0.3,
0.5, 0.4, 0.2,
0.7, 0.5, 0.1

),
ncol = 3, byrow = TRUE

)
mygrid <- BlockLambdaGrid(Lambda, lambda_other_blocks = 0.1)

# Multi-parameter grid (not recommended)
Lambda <- matrix(

c(
0.8, 0.6, 0.3,
0.5, 0.4, 0.2,
0.7, 0.5, 0.1

),
ncol = 3, byrow = TRUE

)
mygrid <- BlockLambdaGrid(Lambda, lambda_other_blocks = NULL)

CalibrationPlot Calibration plot

Description

Creates a plot showing the stability score as a function of the parameter(s) controlling the level of
sparsity in the underlying feature selection algorithm and/or the threshold in selection proportions.
See examples in VariableSelection, GraphicalModel, Clustering and BiSelection.

Usage

CalibrationPlot(
stability,
block_id = NULL,
col = NULL,
pch = 19,
cex = 0.7,
xlim = NULL,
ylim = NULL,
bty = "o",
lines = TRUE,
lty = 3,
lwd = 2,
show_argmax = TRUE,
show_pix = FALSE,
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show_piy = FALSE,
offset = 0.3,
legend = TRUE,
legend_length = NULL,
legend_range = NULL,
ncol = 1,
xlab = NULL,
ylab = NULL,
zlab = expression(italic(q)),
xlas = 2,
ylas = NULL,
zlas = 2,
cex.lab = 1.5,
cex.axis = 1,
cex.legend = 1.2,
xgrid = FALSE,
ygrid = FALSE,
params = c("ny", "alphay", "nx", "alphax")

)

Arguments

stability output of VariableSelection, GraphicalModel or BiSelection.

block_id ID of the block to visualise. Only used for multi-block stability selection graph-
ical models. If block_id=NULL, all blocks are represented in separate panels.

col vector of colours.

pch type of point, as in points.

cex size of point.

xlim displayed range along the x-axis. Only used if stability is the output of
BiSelection.

ylim displayed range along the y-axis. Only used if stability is the output of
BiSelection.

bty character string indicating if the box around the plot should be drawn. Possible
values include: "o" (default, the box is drawn), or "n" (no box).

lines logical indicating if the points should be linked by lines. Only used if stability
is the output of BiSelection or Clustering.

lty line type, as in par. Only used if stability is the output of BiSelection.

lwd line width, as in par. Only used if stability is the output of BiSelection.

show_argmax logical indicating if the calibrated parameter(s) should be indicated by lines.

show_pix logical indicating if the calibrated threshold in selection proportion in X should
be written for each point. Only used if stability is the output of BiSelection.

show_piy logical indicating if the calibrated threshold in selection proportion in Y should
be written for each point. Only used if stability is the output of BiSelection
with penalisation of the outcomes.
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offset distance between the point and the text, as in text. Only used if show_pix=TRUE
or show_piy=TRUE.

legend logical indicating if the legend should be included.

legend_length length of the colour bar. Only used if stability is the output of VariableSelection
or GraphicalModel.

legend_range range of the colour bar. Only used if stability is the output of VariableSelection
or GraphicalModel.

ncol integer indicating the number of columns in the legend.

xlab label of the x-axis.

ylab label of the y-axis.

zlab label of the z-axis. Only used if stability is the output of VariableSelection
or GraphicalModel.

xlas orientation of labels on the x-axis, as las in par.

ylas orientation of labels on the y-axis, as las in par.

zlas orientation of labels on the z-axis, as las in par.

cex.lab font size for labels.

cex.axis font size for axes.

cex.legend font size for text legend entries.

xgrid logical indicating if a vertical grid should be drawn. Only used if stability is
the output of BiSelection.

ygrid logical indicating if a horizontal grid should be drawn. Only used if stability
is the output of BiSelection.

params vector of possible parameters if stability is of class bi_selection. The order
of these parameters defines the order in which they are represented. Only used
if stability is the output of BiSelection.

Value

A calibration plot.

See Also

VariableSelection, GraphicalModel, Clustering, BiSelection

CART Classification And Regression Trees

Description

Runs decision trees using implementation from rpart. This function is not using stability.
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Usage

CART(xdata, ydata, Lambda = NULL, family, ...)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the number of splits in the decision tree.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

... additional parameters passed to rpart.

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors. Indices along the third dimension correspond
to outcome variable(s).

References

Breiman L, Friedman JH, Olshen R, Stone CJ (1984). Classification and Regression Trees. Wadsworth.

See Also

SelectionAlgo, VariableSelection

Other underlying algorithm functions: ClusteringAlgo(), PenalisedGraphical(), PenalisedOpenMx(),
PenalisedRegression()

Examples

if (requireNamespace("rpart", quietly = TRUE)) {
# Data simulation
set.seed(1)
simul <- SimulateRegression(pk = 50)

# Running the LASSO
mycart <- CART(
xdata = simul$xdata,
ydata = simul$ydata,
family = "gaussian"

)
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head(mycart$selected)
}

Clustering Consensus clustering

Description

Performs consensus (weighted) clustering. The underlying algorithm (e.g. hierarchical clustering)
is run with different number of clusters nc. In consensus weighed clustering, weighted distances
are calculated using the cosa2 algorithm with different penalty parameters Lambda. The hyper-
parameters are calibrated by maximisation of the consensus score.

Usage

Clustering(
xdata,
nc = NULL,
eps = NULL,
Lambda = NULL,
K = 100,
tau = 0.5,
seed = 1,
n_cat = 3,
implementation = HierarchicalClustering,
scale = TRUE,
linkage = "complete",
row = TRUE,
optimisation = c("grid_search", "nloptr"),
n_cores = 1,
output_data = FALSE,
verbose = TRUE,
beep = NULL,
...

)

Arguments

xdata data matrix with observations as rows and variables as columns.

nc matrix of parameters controlling the number of clusters in the underlying algo-
rithm specified in implementation. If nc is not provided, it is set to seq(1,
tau*nrow(xdata)).

eps radius in density-based clustering, see dbscan. Only used if implementation=DBSCANClustering.

Lambda vector of penalty parameters for weighted distance calculation. Only used for
distance-based clustering, including for example implementation=HierarchicalClustering,
implementation=PAMClustering, or implementation=DBSCANClustering.
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K number of resampling iterations.

tau subsample size.

seed value of the seed to initialise the random number generator and ensure repro-
ducibility of the results (see set.seed).

n_cat computation options for the stability score. Default is NULL to use the score
based on a z test. Other possible values are 2 or 3 to use the score based on the
negative log-likelihood.

implementation function to use for clustering. Possible functions include HierarchicalClustering
(hierarchical clustering), PAMClustering (Partitioning Around Medoids), KMeansClustering
(k-means) and GMMClustering (Gaussian Mixture Models). Alternatively, a
user-defined function taking xdata and Lambda as arguments and returning a
binary and symmetric matrix for which diagonal elements are equal to zero can
be used.

scale logical indicating if the data should be scaled to ensure that all variables con-
tribute equally to the clustering of the observations.

linkage character string indicating the type of linkage used in hierarchical clustering to
define the stable clusters. Possible values include "complete", "single" and
"average" (see argument "method" in hclust for a full list). Only used if
implementation=HierarchicalClustering.

row logical indicating if rows (if row=TRUE) or columns (if row=FALSE) contain the
items to cluster.

optimisation character string indicating the type of optimisation method to calibrate the regu-
larisation parameter (only used if Lambda is not NULL). With optimisation="grid_search"
(the default), all values in Lambda are visited. Alternatively, optimisation al-
gorithms implemented in nloptr can be used with optimisation="nloptr".
By default, we use "algorithm"="NLOPT_GN_DIRECT_L", "xtol_abs"=0.1,
"ftol_abs"=0.1 and "maxeval" defined as length(Lambda). These values
can be changed by providing the argument opts (see nloptr).

n_cores number of cores to use for parallel computing (see argument workers in multisession).
Using n_cores>1 is only supported with optimisation="grid_search".

output_data logical indicating if the input datasets xdata and ydata should be included in
the output.

verbose logical indicating if a loading bar and messages should be printed.

beep sound indicating the end of the run. Possible values are: NULL (no sound) or an
integer between 1 and 11 (see argument sound in beep).

... additional parameters passed to the functions provided in implementation or
resampling.

Details

In consensus clustering, a clustering algorithm is applied on K subsamples of the observations with
different numbers of clusters provided in nc. If row=TRUE (the default), the observations (rows)
are the items to cluster. If row=FALSE, the variables (columns) are the items to cluster. For a
given number of clusters, the consensus matrix coprop stores the proportion of iterations where
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two items were in the same estimated cluster, out of all iterations where both items were drawn in
the subsample.

Stable cluster membership is obtained by applying a distance-based clustering method using (1-coprop)
as distance (see Clusters).

These parameters can be calibrated by maximisation of a stability score (see ConsensusScore)
calculated under the null hypothesis of equiprobability of co-membership.

It is strongly recommended to examine the calibration plot (see CalibrationPlot) to check that
there is a clear maximum. The absence of a clear maximum suggests that the clustering is not stable,
consensus clustering outputs should not be trusted in that case.

To ensure reproducibility of the results, the starting number of the random number generator is set
to seed.

For parallelisation, stability selection with different sets of parameters can be run on n_cores cores.
Using n_cores > 1 creates a multisession.

Value

An object of class clustering. A list with:

Sc a matrix of the best stability scores for different (sets of) parameters controlling
the number of clusters and penalisation of attribute weights.

nc a matrix of numbers of clusters.

Lambda a matrix of regularisation parameters for attribute weights.

Q a matrix of the average number of selected attributes by the underlying algorithm
with different regularisation parameters.

coprop an array of consensus matrices. Rows and columns correspond to items. In-
dices along the third dimension correspond to different parameters controlling
the number of clusters and penalisation of attribute weights.

selprop an array of selection proportions. Columns correspond to attributes. Rows corre-
spond to different parameters controlling the number of clusters and penalisation
of attribute weights.

method a list with type="clustering" and values used for arguments implementation,
linkage, and resampling.

params a list with values used for arguments K, tau, pk, n (number of observations in
xdata), and seed.

The rows of Sc, nc, Lambda, Q, selprop and indices along the third dimension of coprop are ordered
in the same way and correspond to parameter values stored in nc and Lambda.

References

Bodinier B, Vuckovic D, Rodrigues S, Filippi S, Chiquet J, Chadeau-Hyam M (2023). “Automated
calibration of consensus weighted distance-based clustering approaches using sharp.” Bioinformat-
ics, btad635. ISSN 1367-4811, doi:10.1093/bioinformatics/btad635, https://academic.oup.com/bioinformatics/advance-
article-pdf/doi/10.1093/bioinformatics/btad635/52191190/btad635.pdf.

https://doi.org/10.1093/bioinformatics/btad635
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Kampert MM, Meulman JJ, Friedman JH (2017). “rCOSA: A Software Package for Clustering
Objects on Subsets of Attributes.” Journal of Classification, 34(3), 514–547. doi:10.1007/s00357-
0179240z.

Friedman JH, Meulman JJ (2004). “Clustering objects on subsets of attributes (with discussion).”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(4), 815-849. doi:10.1111/
j.14679868.2004.02059.x, https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.02059.x,
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x.

Monti S, Tamayo P, Mesirov J, Golub T (2003). “Consensus Clustering: A Resampling-Based
Method for Class Discovery and Visualization of Gene Expression Microarray Data.” Machine
Learning, 52(1), 91–118. doi:10.1023/A:1023949509487.

See Also

Resample, ConsensusScore, HierarchicalClustering, PAMClustering, KMeansClustering,
GMMClustering

Other stability functions: BiSelection(), GraphicalModel(), StructuralModel(), VariableSelection()

Examples

# Consensus clustering
set.seed(1)
simul <- SimulateClustering(

n = c(30, 30, 30), nu_xc = 1, ev_xc = 0.5
)
stab <- Clustering(xdata = simul$data)
print(stab)
CalibrationPlot(stab)
summary(stab)
Clusters(stab)
plot(stab)

# Consensus weighted clustering
if (requireNamespace("rCOSA", quietly = TRUE)) {

set.seed(1)
simul <- SimulateClustering(
n = c(30, 30, 30), pk = 20,
theta_xc = c(rep(1, 10), rep(0, 10)),
ev_xc = 0.9

)
stab <- Clustering(

xdata = simul$data,
Lambda = LambdaSequence(lmin = 0.1, lmax = 10, cardinal = 10),
noit = 20, niter = 10

)
print(stab)
CalibrationPlot(stab)
summary(stab)
Clusters(stab)
plot(stab)
WeightBoxplot(stab)

}

https://doi.org/10.1007/s00357-017-9240-z
https://doi.org/10.1007/s00357-017-9240-z
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x
https://doi.org/10.1023/A%3A1023949509487
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ClusteringAlgo (Weighted) clustering algorithm

Description

Runs the (weighted) clustering algorithm specified in the argument implementation and returns
matrices of variable weights, and the co-membership structure. This function is not using stability.

Usage

ClusteringAlgo(
xdata,
nc = NULL,
eps = NULL,
Lambda = NULL,
scale = TRUE,
row = TRUE,
implementation = HierarchicalClustering,
...

)

Arguments

xdata data matrix with observations as rows and variables as columns.

nc matrix of parameters controlling the number of clusters in the underlying algo-
rithm specified in implementation. If nc is not provided, it is set to seq(1,
nrow(xdata)).

eps radius in density-based clustering, see dbscan. Only used if implementation=DBSCANClustering.

Lambda vector of penalty parameters.

scale logical indicating if the data should be scaled to ensure that all variables con-
tribute equally to the clustering of the observations.

row logical indicating if rows (if row=TRUE) or columns (if row=FALSE) contain the
items to cluster.

implementation function to use for clustering. Possible functions include HierarchicalClustering
(hierarchical clustering), PAMClustering (Partitioning Around Medoids), KMeansClustering
(k-means) and GMMClustering (Gaussian Mixture Models). Alternatively, a
user-defined function taking xdata and Lambda as arguments and returning a
binary and symmetric matrix for which diagonal elements are equal to zero can
be used.

... additional parameters passed to the function provided in implementation.
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Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

weight array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors. Indices along the third dimension correspond
to outcome variable(s).

comembership array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors. Indices along the third dimension correspond
to outcome variable(s).

See Also

VariableSelection

Other underlying algorithm functions: CART(), PenalisedGraphical(), PenalisedOpenMx(),
PenalisedRegression()

Examples

# Simulation of 15 observations belonging to 3 groups
set.seed(1)
simul <- SimulateClustering(

n = c(5, 5, 5), pk = 100
)

# Running hierarchical clustering
myclust <- ClusteringAlgo(

xdata = simul$data, nc = 2:5,
implementation = HierarchicalClustering

)

ClusteringPerformance Clustering performance

Description

Computes different metrics of clustering performance by comparing true and predicted co-membership.
This function can only be used in simulation studies (i.e. when the true cluster membership is
known).

Usage

ClusteringPerformance(theta, theta_star, ...)
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Arguments

theta output from Clustering. Alternatively, it can be the estimated co-membership
matrix (see CoMembership).

theta_star output from SimulateClustering.Alternatively, it can be the true co-membership
matrix (see CoMembership).

... additional arguments to be passed to Clusters.

Value

A matrix of selection metrics including:

TP number of True Positives (TP)

FN number of False Negatives (TN)

FP number of False Positives (FP)

TN number of True Negatives (TN)

sensitivity sensitivity, i.e. TP/(TP+FN)

specificity specificity, i.e. TN/(TN+FP)

accuracy accuracy, i.e. (TP+TN)/(TP+TN+FP+FN)

precision precision (p), i.e. TP/(TP+FP)

recall recall (r), i.e. TP/(TP+FN)

F1_score F1-score, i.e. 2*p*r/(p+r)

rand Rand Index, i.e. (TP+TN)/(TP+FP+TN+FN)

ari Adjusted Rand Index (ARI), i.e. 2*(TP*TN-FP*FN)/((TP+FP)*(TN+FP)+(TP+FN)*(TN+FN))

jaccard Jaccard index, i.e. TP/(TP+FP+FN)

See Also

Other functions for model performance: SelectionPerformance(), SelectionPerformanceGraph()

Examples

# Data simulation
set.seed(1)
simul <- SimulateClustering(

n = c(30, 30, 30), nu_xc = 1
)
plot(simul)

# Consensus clustering
stab <- Clustering(

xdata = simul$data, nc = seq_len(5)
)

# Clustering performance
ClusteringPerformance(stab, simul)



Combine 27

# Alternative formulation
ClusteringPerformance(

theta = CoMembership(Clusters(stab)),
theta_star = simul$theta

)

Combine Merging stability selection outputs

Description

Merges the outputs from two runs of VariableSelection, GraphicalModel or Clustering. The
two runs must have been done using the same methods and the same params but with different
seeds. The combined output will contain results based on iterations from both stability1 and
stability2. This function can be used for parallelisation.

Usage

Combine(stability1, stability2, include_beta = TRUE)

Arguments

stability1 output from a first run of VariableSelection, GraphicalModel, or Clustering.

stability2 output from a second run of VariableSelection, GraphicalModel, or Clustering.

include_beta logical indicating if the beta coefficients of visited models should be concate-
nated. Only applicable to variable selection or clustering.

Value

A single output of the same format.

See Also

VariableSelection, GraphicalModel

Examples

## Variable selection

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")

# Two runs
stab1 <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, seed = 1, K = 10)
stab2 <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, seed = 2, K = 10)
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# Merging the outputs
stab <- Combine(stability1 = stab1, stability2 = stab2, include_beta = FALSE)
str(stab)

## Graphical modelling

# Data simulation
simul <- SimulateGraphical(pk = 20)

# Two runs
stab1 <- GraphicalModel(xdata = simul$data, seed = 1, K = 10)
stab2 <- GraphicalModel(xdata = simul$data, seed = 2, K = 10)

# Merging the outputs
stab <- Combine(stability1 = stab1, stability2 = stab2)
str(stab)

## Clustering

# Data simulation
simul <- SimulateClustering(n = c(15, 15, 15))

# Two runs
stab1 <- Clustering(xdata = simul$data, seed = 1)
stab2 <- Clustering(xdata = simul$data, seed = 2)

# Merging the outputs
stab <- Combine(stability1 = stab1, stability2 = stab2)
str(stab)

CoMembership Pairwise co-membership

Description

Generates a symmetric and binary matrix indicating, if two items are co-members, i.e. belong to
the same cluster.

Usage

CoMembership(groups)

Arguments

groups vector of group membership.
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Value

A symmetric and binary matrix.

Examples

# Simulated grouping structure
mygroups <- c(rep(1, 3), rep(2, 5), rep(3, 2))

# Co-membership matrix
CoMembership(mygroups)

ConsensusScore Consensus score

Description

Computes the consensus score from the consensus matrix, matrix of co-sampling counts and con-
sensus clusters. The score is a z statistic for the comparison of the co-membership proportions
observed within and between the consensus clusters.

Usage

ConsensusScore(prop, K, theta)

Arguments

prop consensus matrix.

K matrix of co-sampling counts.

theta consensus co-membership matrix.

Details

To calculate the consensus score, the features are classified as being stably selected or not (in selec-
tion) or as being in the same consensus cluster or not (in clustering). In selection, the quantities Xw

and Xb are defined as the sum of the selection counts for features that are stably selected or not,
respectively. In clustering, the quantities Xw and Xb are defined as the sum of the co-membership
counts for pairs of items in the same consensus cluster or in different consensus clusters, respec-
tively.

Conditionally on this classification, and under the assumption that the selection (or co-membership)
probabilities are the same for all features (or item pairs) in each of these two categories, the quanti-
ties Xw and Xb follow binomial distributions with probabilities pw and pb, respectively.

In the most unstable situation, we suppose that all features (or item pairs) would have the same
probability of being selected (or co-members). The consensus score is the z statistic from a z test
where the null hypothesis is pw ≤ pb.

The consensus score increases with stability.
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Value

A consensus score.

See Also

Other stability metric functions: FDP(), PFER(), StabilityMetrics(), StabilityScore()

Examples

# Data simulation
set.seed(2)
simul <- SimulateClustering(

n = c(30, 30, 30),
nu_xc = 1

)
plot(simul)

# Consensus clustering
stab <- Clustering(

xdata = simul$data
)
stab$Sc[3]

# Calculating the consensus score
theta <- CoMembership(Clusters(stab, argmax_id = 3))
ConsensusScore(

prop = (stab$coprop[, , 3])[upper.tri(stab$coprop[, , 3])],
K = stab$sampled_pairs[upper.tri(stab$sampled_pairs)],
theta = theta[upper.tri(theta)]

)

DBSCANClustering (Weighted) density-based clustering

Description

Runs Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering using im-
plementation from dbscan. This is also known as the k-medoids algorithm. If Lambda is provided,
clustering is applied on the weighted distance matrix calculated using the COSA algorithm as im-
plemented in cosa2. Otherwise, distances are calculated using dist. This function is not using
stability.

Usage

DBSCANClustering(
xdata,
nc = NULL,
eps = NULL,
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Lambda = NULL,
distance = "euclidean",
...

)

Arguments

xdata data matrix with observations as rows and variables as columns.

nc matrix of parameters controlling the number of clusters in the underlying algo-
rithm specified in implementation. If nc is not provided, it is set to seq(1,
tau*nrow(xdata)).

eps radius in density-based clustering, see dbscan.

Lambda vector of penalty parameters (see argument lambda in cosa2). Unweighted dis-
tance matrices are used if Lambda=NULL.

distance character string indicating the type of distance to use. If Lambda=NULL, pos-
sible values include "euclidean", "maximum", "canberra", "binary", and
"minkowski" (see argument method in dist). Otherwise, possible values in-
clude "euclidean" (pwr=2) or "absolute" (pwr=1) (see argument pwr in cosa2).

... additional parameters passed to dbscan (except for minPts which is fixed to 2),
dist, or cosa2. If weighted=TRUE, parameters niter (default to 1) and noit
(default to 100) correspond to the number of iterations in cosa2 to calculate
weights and may need to be modified.

Value

A list with:

comembership an array of binary and symmetric co-membership matrices.

weights a matrix of median weights by feature.

References

Kampert MM, Meulman JJ, Friedman JH (2017). “rCOSA: A Software Package for Clustering
Objects on Subsets of Attributes.” Journal of Classification, 34(3), 514–547. doi:10.1007/s00357-
0179240z.

Friedman JH, Meulman JJ (2004). “Clustering objects on subsets of attributes (with discussion).”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(4), 815-849. doi:10.1111/
j.14679868.2004.02059.x, https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.02059.x,
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x.

See Also

Other clustering algorithms: GMMClustering(), HierarchicalClustering(), KMeansClustering(),
PAMClustering()

https://doi.org/10.1007/s00357-017-9240-z
https://doi.org/10.1007/s00357-017-9240-z
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x
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Examples

if (requireNamespace("dbscan", quietly = TRUE)) {
# Data simulation
set.seed(1)
simul <- SimulateClustering(n = c(10, 10), pk = 50)
plot(simul)

# DBSCAN clustering
myclust <- DBSCANClustering(
xdata = simul$data,
eps = seq(0, 2 * sqrt(ncol(simul$data) - 1), by = 0.1)

)

# Weighted PAM clustering (using COSA)
if (requireNamespace("rCOSA", quietly = TRUE)) {

myclust <- DBSCANClustering(
xdata = simul$data,
eps = c(0.25, 0.5, 0.75),
Lambda = c(0.2, 0.5)

)
}

}

Ensemble Ensemble model

Description

Creates an ensemble predictive model from VariableSelection outputs.

Usage

Ensemble(stability, xdata, ydata)

Arguments

stability output of VariableSelection.

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Value

An object of class ensemble_model. A list with:

intercept a vector of refitted intercepts for the K calibrated models.

beta a matrix of beta coefficients from the K calibrated models.
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models a list of K models that can be used for prediction. These models are of class "lm"
if family="gaussian" or "glm" if family="binomial".

family type of regression, extracted from stability. Possible values are "gaussian"
or "binomial".

See Also

Other ensemble model functions: EnsemblePredictions()

Examples

# Linear regression
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "gaussian")
ensemble <- Ensemble(stability = stab, xdata = simul$xdata, ydata = simul$ydata)

# Logistic regression
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 20, family = "binomial")
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "binomial")
ensemble <- Ensemble(stability = stab, xdata = simul$xdata, ydata = simul$ydata)

EnsemblePredictions Predictions from ensemble model

Description

Makes predictions using an ensemble model created from VariableSelection outputs. For each
observation in xdata, the predictions are calculated as the average predicted values obtained for
that observation over the K models fitted in calibrated stability selection.

Usage

EnsemblePredictions(ensemble, xdata, ...)

Arguments

ensemble output of Ensemble.

xdata matrix of predictors with observations as rows and variables as columns.

... additional parameters passed to predict.

Value

A matrix of predictions computed from the observations in xdata.
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See Also

predict.variable_selection

Other ensemble model functions: Ensemble()

Examples

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 50, family = "gaussian")

# Training/test split
ids <- Split(data = simul$ydata, tau = c(0.8, 0.2))
stab <- VariableSelection(

xdata = simul$xdata[ids[[1]], ],
ydata = simul$ydata[ids[[1]], ]

)

# Constructing the ensemble model
ensemble <- Ensemble(

stability = stab,
xdata = simul$xdata[ids[[1]], ],
ydata = simul$ydata[ids[[1]], ]

)

# Making predictions
yhat <- EnsemblePredictions(

ensemble = ensemble,
xdata = simul$xdata[ids[[2]], ]

)

# Calculating Q-squared
cor(simul$ydata[ids[[2]], ], yhat)^2

ExplanatoryPerformance

Prediction performance in regression

Description

Calculates model performance for linear (measured by Q-squared), logistic (AUC) or Cox (C-
statistic) regression. This is done by (i) refitting the model on a training set including a proportion
tau of the observations, and (ii) evaluating the performance on the remaining observations (test
set). For more reliable results, the procedure can be repeated K times (default K=1).
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Usage

ExplanatoryPerformance(
xdata,
ydata,
new_xdata = NULL,
new_ydata = NULL,
stability = NULL,
family = NULL,
implementation = NULL,
prediction = NULL,
resampling = "subsampling",
K = 1,
tau = 0.8,
seed = 1,
n_thr = NULL,
time = 1000,
verbose = FALSE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

new_xdata optional test set (predictor data).

new_ydata optional test set (outcome data).

stability output of VariableSelection. If stability=NULL (the default), a model in-
cluding all variables in xdata as predictors is fitted. Argument family must be
provided in this case.

family type of regression model. Possible values include "gaussian" (linear regres-
sion), "binomial" (logistic regression), and "cox" (survival analysis). If pro-
vided, this argument must be consistent with input stability.

implementation optional function to refit the model. If implementation=NULL and stability
is the output of VariableSelection, lm (linear regression), coxph (Cox regres-
sion), glm (logistic regression), or multinom (multinomial regression) is used.

prediction optional function to compute predicted values from the model refitted with implementation.

resampling resampling approach to create the training set. The default is "subsampling"
for sampling without replacement of a proportion tau of the observations. Al-
ternatively, this argument can be a function to use for resampling. This function
must use arguments named data and tau and return the IDs of observations to
be included in the resampled dataset.

K number of training-test splits. Only used if new_xdata and new_ydata are not
provided.
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tau proportion of observations used in the training set. Only used if new_xdata and
new_ydata are not provided.

seed value of the seed to ensure reproducibility of the results. Only used if new_xdata
and new_ydata are not provided.

n_thr number of thresholds to use to construct the ROC curve. If n_thr=NULL, all
predicted probability values are iteratively used as thresholds. For faster com-
putations on large data, less thresholds can be used. Only applicable to logistic
regression.

time numeric indicating the time for which the survival probabilities are computed.
Only applicable to Cox regression.

verbose logical indicating if a loading bar and messages should be printed.

... additional parameters passed to the function provided in resampling.

Details

For a fair evaluation of the prediction performance, the data is split into a training set (including a
proportion tau of the observations) and test set (remaining observations). The regression model is
fitted on the training set and applied on the test set. Performance metrics are computed in the test
set by comparing predicted and observed outcomes.

For logistic regression, a Receiver Operating Characteristic (ROC) analysis is performed: the True
and False Positive Rates (TPR and FPR), and Area Under the Curve (AUC) are computed for dif-
ferent thresholds in predicted probabilities.

For Cox regression, the Concordance Index (as implemented in concordance) looking at survival
probabilities up to a specific time is computed.

For linear regression, the squared correlation between predicted and observed outcome in the test
set (Q-squared) is reported.

Value

A list with:

TPR True Positive Rate (for logistic regression only).

FPR False Positive Rate (for logistic regression only).

AUC Area Under the Curve (for logistic regression only).

concordance Concordance index (for Cox regression only).

Beta matrix of estimated beta coefficients across the K iterations. Coefficients are
extracted using the coef function.

See Also

VariableSelection, Refit

Other prediction performance functions: Incremental()
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Examples

# Data simulation
set.seed(1)
simul <- SimulateRegression(

n = 1000, pk = 20,
family = "binomial", ev_xy = 0.8

)

# Data split: selection, training and test set
ids <- Split(

data = simul$ydata,
family = "binomial",
tau = c(0.4, 0.3, 0.3)

)
xselect <- simul$xdata[ids[[1]], ]
yselect <- simul$ydata[ids[[1]], ]
xtrain <- simul$xdata[ids[[2]], ]
ytrain <- simul$ydata[ids[[2]], ]
xtest <- simul$xdata[ids[[3]], ]
ytest <- simul$ydata[ids[[3]], ]

# Stability selection
stab <- VariableSelection(

xdata = xselect,
ydata = yselect,
family = "binomial"

)

# Performances in test set of model refitted in training set
roc <- ExplanatoryPerformance(

xdata = xtrain, ydata = ytrain,
new_xdata = xtest, new_ydata = ytest,
stability = stab

)
plot(roc)
roc$AUC

# Alternative with multiple training/test splits
roc <- ExplanatoryPerformance(

xdata = rbind(xtrain, xtest),
ydata = c(ytrain, ytest),
stability = stab, K = 100

)
plot(roc)
boxplot(roc$AUC)

# Partial Least Squares Discriminant Analysis
if (requireNamespace("sgPLS", quietly = TRUE)) {

stab <- VariableSelection(
xdata = xselect,
ydata = yselect,
implementation = SparsePLS,
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family = "binomial"
)

# Defining wrapping functions for predictions from PLS-DA
PLSDA <- function(xdata, ydata, family = "binomial") {

model <- mixOmics::plsda(X = xdata, Y = as.factor(ydata), ncomp = 1)
return(model)

}
PredictPLSDA <- function(xdata, model) {

xdata <- xdata[, rownames(model$loadings$X), drop = FALSE]
predicted <- predict(object = model, newdata = xdata)$predict[, 2, 1]
return(predicted)

}

# Performances with custom models
roc <- ExplanatoryPerformance(

xdata = rbind(xtrain, xtest),
ydata = c(ytrain, ytest),
stability = stab, K = 100,
implementation = PLSDA, prediction = PredictPLSDA

)
plot(roc)

}

FDP False Discovery Proportion

Description

Computes the False Discovery Proportion (upper-bound) as a ratio of the PFER (upper-bound) over
the number of stably selected features. In stability selection, the FDP corresponds to the expected
proportion of stably selected features that are not relevant to the outcome (i.e. proportion of False
Positives among stably selected features).

Usage

FDP(selprop, PFER, pi)

Arguments

selprop matrix or vector of selection proportions.

PFER Per Family Error Rate.

pi threshold in selection proportions.

Value

The estimated upper-bound in FDP.
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See Also

Other stability metric functions: ConsensusScore(), PFER(), StabilityMetrics(), StabilityScore()

Examples

# Simulating set of selection proportions
selprop <- round(runif(n = 20), digits = 2)

# Computing the FDP with a threshold of 0.8
fdp <- FDP(PFER = 3, selprop = selprop, pi = 0.8)

Folds Splitting observations into folds

Description

Generates a list of n_folds non-overlapping sets of observation IDs (folds).

Usage

Folds(data, family = NULL, n_folds = 5)

Arguments

data vector or matrix of data. In regression, this should be the outcome data.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

n_folds number of folds.

Details

For categorical outcomes (i.e. family argument is set to "binomial", "multinomial" or "cox"),
the split is done such that the proportion of observations from each of the categories in each of the
folds is representative of that of the full sample.

Value

A list of length n_folds with sets of non-overlapping observation IDs.
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Examples

# Splitting into 5 folds
simul <- SimulateRegression()
ids <- Folds(data = simul$ydata)
lapply(ids, length)

# Balanced folds with respect to a binary variable
simul <- SimulateRegression(family = "binomial")
ids <- Folds(data = simul$ydata, family = "binomial")
lapply(ids, FUN = function(x) {

table(simul$ydata[x, ])
})

GMMClustering Model-based clustering

Description

Runs clustering with Gaussian Mixture Models (GMM) using implementation from Mclust. This
function is not using stability.

Usage

GMMClustering(xdata, nc = NULL, ...)

Arguments

xdata data matrix with observations as rows and variables as columns.

nc matrix of parameters controlling the number of clusters in the underlying algo-
rithm specified in implementation. If nc is not provided, it is set to seq(1,
tau*nrow(xdata)).

... additional parameters passed to Mclust.

Value

A list with:

comembership an array of binary and symmetric co-membership matrices.

weights a matrix of median weights by feature.

See Also

Other clustering algorithms: DBSCANClustering(), HierarchicalClustering(), KMeansClustering(),
PAMClustering()
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Examples

# Data simulation
set.seed(1)
simul <- SimulateClustering(n = c(10, 10), pk = 50)

# Clustering using Gaussian Mixture Models
mygmm <- GMMClustering(xdata = simul$data, nc = seq_len(30))

Graph Graph visualisation

Description

Produces an igraph object from an adjacency matrix.

Usage

Graph(
adjacency,
node_label = NULL,
node_colour = NULL,
node_shape = NULL,
edge_colour = "grey60",
label_colour = "grey20",
mode = "undirected",
weighted = FALSE,
satellites = FALSE

)

Arguments

adjacency adjacency matrix or output of GraphicalModel.

node_label optional vector of node labels. This vector must contain as many entries as there
are rows/columns in the adjacency matrix and must be in the same order (the
order is used to assign labels to nodes).

node_colour optional vector of node colours. This vector must contain as many entries as
there are rows/columns in the adjacency matrix and must be in the same order
(the order is used to assign colours to nodes). Integers, named colours or RGB
values can be used.

node_shape optional vector of node shapes. This vector must contain as many entries as
there are rows/columns in the adjacency matrix and must be in the same order
(the order is used to assign shapes to nodes). Possible values are "circle",
"square", "triangle" or "star".

edge_colour optional character string for edge colour. Integers, named colours or RGB values
can be used.
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label_colour optional character string for label colour. Integers, named colours or RGB values
can be used.

mode character string indicating how the adjacency matrix should be interpreted. Pos-
sible values include "undirected" or "directed" (see graph_from_adjacency_matrix).

weighted indicating if entries of the adjacency matrix should define edge width. If weighted=FALSE,
an unweighted igraph object is created, all edges have the same width. If weighted=TRUE,
edge width is defined by the corresponding value in the adjacency matrix. If
weighted=NULL, nodes are linked by as many edges as indicated in the adja-
cency matrix (integer values are needed).

satellites logical indicating if unconnected nodes (satellites) should be included in the
igraph object.

Details

All functionalities implemented in igraph can be used on the output. These include cosmetic
changes for the visualisation, but also various tools for network analysis (including topological
properties and community detection).

The R package visNetwork offers interactive network visualisation tools. An igraph object can
easily be converted to a visNetwork object (see example below).

For Cytoscape users, the RCy3 package can be used to open the network in Cytoscape.

Value

An igraph object.

See Also

Adjacency, GraphicalModel, igraph manual, visNetwork manual, Cytoscape

Examples

## From adjacency matrix

# Un-weighted
adjacency <- SimulateAdjacency(pk = 20, topology = "scale-free")
plot(Graph(adjacency))

# Weighted
adjacency <- adjacency * runif(prod(dim(adjacency)))
adjacency <- adjacency + t(adjacency)
plot(Graph(adjacency, weighted = TRUE))

# Node colours and shapes
plot(Graph(adjacency, weighted = TRUE, node_shape = "star", node_colour = "red"))

## From stability selection outputs

# Graphical model

https://igraph.org/r/
http://datastorm-open.github.io/visNetwork/
https://cytoscape.org
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set.seed(1)
simul <- SimulateGraphical(pk = 20)
stab <- GraphicalModel(xdata = simul$data)
plot(Graph(stab))

# Sparse PLS
if (requireNamespace("sgPLS", quietly = TRUE)) {

set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata
stab <- BiSelection(
xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", ncomp = 3,
LambdaX = seq_len(ncol(x) - 1),
implementation = SparsePLS

)
plot(Graph(stab))

}

## Tools from other packages

# Applying some igraph functionalities
adjacency <- SimulateAdjacency(pk = 20, topology = "scale-free")
mygraph <- Graph(adjacency)
igraph::degree(mygraph)
igraph::betweenness(mygraph)
igraph::shortest_paths(mygraph, from = 1, to = 2)
igraph::walktrap.community(mygraph)

# Interactive view using visNetwork
if (requireNamespace("visNetwork", quietly = TRUE)) {

vgraph <- mygraph
igraph::V(vgraph)$shape <- rep("dot", length(igraph::V(vgraph)))
v <- visNetwork::visIgraph(vgraph)
mylayout <- as.matrix(v$x$nodes[, c("x", "y")])
mylayout[, 2] <- -mylayout[, 2]
plot(mygraph, layout = mylayout)

}

# Opening in Cytoscape using RCy3
if (requireNamespace("RCy3", quietly = TRUE)) {

# Make sure that Cytoscape is open before running the following line
# RCy3::createNetworkFromIgraph(mygraph)

}

GraphComparison Edge-wise comparison of two graphs
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Description

Generates an igraph object representing the common and graph-specific edges.

Usage

GraphComparison(
graph1,
graph2,
col = c("tomato", "forestgreen", "navy"),
lty = c(2, 3, 1),
node_colour = NULL,
show_labels = TRUE,
...

)

Arguments

graph1 first graph. Possible inputs are: adjacency matrix, or igraph object, or output of
GraphicalModel, VariableSelection, BiSelection, or output of SimulateGraphical,
SimulateRegression.

graph2 second graph.

col vector of edge colours. The first entry of the vector defines the colour of edges
in graph1 only, second entry is for edges in graph2 only and third entry is for
common edges.

lty vector of line types for edges. The order is defined as for argument col.

node_colour optional vector of node colours. This vector must contain as many entries as
there are rows/columns in the adjacency matrix and must be in the same order
(the order is used to assign colours to nodes). Integers, named colours or RGB
values can be used.

show_labels logical indicating if the node labels should be displayed.

... additional arguments to be passed to Graph.

Value

An igraph object.

See Also

SelectionPerformanceGraph

Examples

# Data simulation
set.seed(1)
simul1 <- SimulateGraphical(pk = 30)
set.seed(2)
simul2 <- SimulateGraphical(pk = 30)
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# Edge-wise comparison of the two graphs
mygraph <- GraphComparison(

graph1 = simul1,
graph2 = simul2

)
plot(mygraph, layout = igraph::layout_with_kk(mygraph))

GraphicalAlgo Graphical model algorithm

Description

Runs the algorithm specified in the argument implementation and returns the estimated adjacency
matrix. This function is not using stability.

Usage

GraphicalAlgo(
xdata,
pk = NULL,
Lambda,
Sequential_template = NULL,
scale = TRUE,
implementation = PenalisedGraphical,
start = "cold",
...

)

Arguments

xdata matrix with observations as rows and variables as columns.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

Lambda matrix of parameters controlling the level of sparsity in the underlying fea-
ture selection algorithm specified in implementation. If Lambda=NULL and
implementation=PenalisedGraphical, LambdaGridGraphical is used to de-
fine a relevant grid. Lambda can be provided as a vector or a matrix with
length(pk) columns.

Sequential_template

logical matrix encoding the type of procedure to use for data with multiple
blocks in stability selection graphical modelling. For multi-block estimation,
the stability selection model is constructed as the union of block-specific stable
edges estimated while the others are weakly penalised (TRUE only for the block
currently being calibrated and FALSE for other blocks). Other approaches with
joint calibration of the blocks are allowed (all entries are set to TRUE).



46 GraphicalModel

scale logical indicating if the correlation (scale=TRUE) or covariance (scale=FALSE)
matrix should be used as input of glassoFast if implementation=PenalisedGraphical.
Otherwise, this argument must be used in the function provided in implementation.

implementation function to use for graphical modelling. If implementation=PenalisedGraphical,
the algorithm implemented in glassoFast is used for regularised estimation of
a conditional independence graph. Alternatively, a user-defined function can be
provided.

start character string indicating if the algorithm should be initialised at the estimated
(inverse) covariance with previous penalty parameters (start="warm") or not
(start="cold"). Using start="warm" can speed-up the computations, but
could lead to convergence issues (in particular with small Lambda_cardinal).
Only used for implementation=PenalisedGraphical (see argument "start"
in glassoFast).

... additional parameters passed to the function provided in implementation.

Details

The use of the procedure from Equation (4) or (5) is controlled by the argument "Sequential_template".

Value

An array with binary and symmetric adjacency matrices along the third dimension.

See Also

GraphicalModel, PenalisedGraphical

Other wrapping functions: SelectionAlgo()

Examples

# Data simulation
set.seed(1)
simul <- SimulateGraphical()

# Running graphical LASSO
myglasso <- GraphicalAlgo(

xdata = simul$data,
Lambda = cbind(c(0.1, 0.2))

)

GraphicalModel Stability selection graphical model

Description

Performs stability selection for graphical models. The underlying graphical model (e.g. graphical
LASSO) is run with different combinations of parameters controlling the sparsity (e.g. penalty pa-
rameter) and thresholds in selection proportions. These two hyper-parameters are jointly calibrated
by maximisation of the stability score.
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Usage

GraphicalModel(
xdata,
pk = NULL,
Lambda = NULL,
lambda_other_blocks = 0.1,
pi_list = seq(0.01, 0.99, by = 0.01),
K = 100,
tau = 0.5,
seed = 1,
n_cat = NULL,
implementation = PenalisedGraphical,
start = "warm",
scale = TRUE,
resampling = "subsampling",
cpss = FALSE,
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
Lambda_cardinal = 50,
lambda_max = NULL,
lambda_path_factor = 0.001,
max_density = 0.5,
optimisation = c("grid_search", "nloptr"),
n_cores = 1,
output_data = FALSE,
verbose = TRUE,
beep = NULL,
...

)

Arguments

xdata data matrix with observations as rows and variables as columns. For multi-block
stability selection, the variables in data have to be ordered by group.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

Lambda matrix of parameters controlling the level of sparsity in the underlying fea-
ture selection algorithm specified in implementation. If Lambda=NULL and
implementation=PenalisedGraphical, LambdaGridGraphical is used to de-
fine a relevant grid. Lambda can be provided as a vector or a matrix with
length(pk) columns.

lambda_other_blocks

optional vector of parameters controlling the level of sparsity in neighbour blocks
for the multi-block procedure. To use jointly a specific set of parameters for each
block, lambda_other_blocks must be set to NULL (not recommended). Only
used for multi-block stability selection, i.e. if length(pk)>1.
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pi_list vector of thresholds in selection proportions. If n_cat=NULL or n_cat=2, these
values must be >0 and <1. If n_cat=3, these values must be >0.5 and <1.

K number of resampling iterations.
tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.
seed value of the seed to initialise the random number generator and ensure repro-

ducibility of the results (see set.seed).
n_cat computation options for the stability score. Default is NULL to use the score

based on a z test. Other possible values are 2 or 3 to use the score based on the
negative log-likelihood.

implementation function to use for graphical modelling. If implementation=PenalisedGraphical,
the algorithm implemented in glassoFast is used for regularised estimation of
a conditional independence graph. Alternatively, a user-defined function can be
provided.

start character string indicating if the algorithm should be initialised at the estimated
(inverse) covariance with previous penalty parameters (start="warm") or not
(start="cold"). Using start="warm" can speed-up the computations, but
could lead to convergence issues (in particular with small Lambda_cardinal).
Only used for implementation=PenalisedGraphical (see argument "start"
in glassoFast).

scale logical indicating if the correlation (scale=TRUE) or covariance (scale=FALSE)
matrix should be used as input of glassoFast if implementation=PenalisedGraphical.
Otherwise, this argument must be used in the function provided in implementation.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

cpss logical indicating if complementary pair stability selection should be done. For
this, the algorithm is applied on two non-overlapping subsets of half of the obser-
vations. A feature is considered as selected if it is selected for both subsamples.
With this method, the data is split K/2 times (K models are fitted). Only used if
PFER_method="MB".

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm. Only used if Lambda=NULL.
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lambda_max optional maximum value for the grid in penalty parameters. If lambda_max=NULL,
the maximum value is set to the maximum covariance in absolute value. Only
used if implementation=PenalisedGraphical and Lambda=NULL.

lambda_path_factor

multiplicative factor used to define the minimum value in the grid.

max_density threshold on the density. The grid is defined such that the density of the esti-
mated graph does not exceed max_density.

optimisation character string indicating the type of optimisation method. With optimisation="grid_search"
(the default), all values in Lambda are visited. Alternatively, optimisation al-
gorithms implemented in nloptr can be used with optimisation="nloptr".
By default, we use "algorithm"="NLOPT_GN_DIRECT_L", "xtol_abs"=0.1,
"ftol_abs"=0.1 and "maxeval"=Lambda_cardinal. These values can be changed
by providing the argument opts (see nloptr). For stability selection using pe-
nalised regression, optimisation="grid_search" may be faster as it allows
for warm start.

n_cores number of cores to use for parallel computing (see argument workers in multisession).
Using n_cores>1 is only supported with optimisation="grid_search".

output_data logical indicating if the input datasets xdata and ydata should be included in
the output.

verbose logical indicating if a loading bar and messages should be printed.

beep sound indicating the end of the run. Possible values are: NULL (no sound) or an
integer between 1 and 11 (see argument sound in beep).

... additional parameters passed to the functions provided in implementation or
resampling.

Details

In stability selection, a feature selection algorithm is fitted on K subsamples (or bootstrap samples)
of the data with different parameters controlling the sparsity (Lambda). For a given (set of) sparsity
parameter(s), the proportion out of the K models in which each feature is selected is calculated.
Features with selection proportions above a threshold pi are considered stably selected. The stability
selection model is controlled by the sparsity parameter(s) for the underlying algorithm, and the
threshold in selection proportion:

Vλ,π = {j : pλ(j) ≥ π}
These parameters can be calibrated by maximisation of a stability score (see ConsensusScore if
n_cat=NULL or StabilityScore otherwise) calculated under the null hypothesis of equiprobability
of selection.

It is strongly recommended to examine the calibration plot carefully to check that the grids of pa-
rameters Lambda and pi_list do not restrict the calibration to a region that would not include the
global maximum (see CalibrationPlot). In particular, the grid Lambda may need to be extended
when the maximum stability is observed on the left or right edges of the calibration heatmap. In
some instances, multiple peaks of stability score can be observed. Simulation studies suggest that
the peak corresponding to the largest number of selected features tend to give better selection perfor-
mances. This is not necessarily the highest peak (which is automatically retained by the functions
in this package). The user can decide to manually choose another peak.
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To control the expected number of False Positives (Per Family Error Rate) in the results, a threshold
PFER_thr can be specified. The optimisation problem is then constrained to sets of parameters that
generate models with an upper-bound in PFER below PFER_thr (see Meinshausen and Bühlmann
(2010) and Shah and Samworth (2013)).

Possible resampling procedures include defining (i) K subsamples of a proportion tau of the ob-
servations, (ii) K bootstrap samples with the full sample size (obtained with replacement), and (iii)
K/2 splits of the data in half for complementary pair stability selection (see arguments resampling
and cpss). In complementary pair stability selection, a feature is considered selected at a given
resampling iteration if it is selected in the two complementary subsamples.

To ensure reproducibility of the results, the starting number of the random number generator is set
to seed.

For parallelisation, stability selection with different sets of parameters can be run on n_cores cores.
Using n_cores > 1 creates a multisession. Alternatively, the function can be run manually with
different seeds and all other parameters equal. The results can then be combined using Combine.

The generated network can be converted into igraph object using Graph. The R package visNetwork
can be used for interactive network visualisation (see examples in Graph).

Value

An object of class graphical_model. A list with:

S a matrix of the best stability scores for different (sets of) parameters controlling
the level of sparsity in the underlying algorithm.

Lambda a matrix of parameters controlling the level of sparsity in the underlying algo-
rithm.

Q a matrix of the average number of selected features by the underlying algorithm
with different parameters controlling the level of sparsity.

Q_s a matrix of the calibrated number of stably selected features with different pa-
rameters controlling the level of sparsity.

P a matrix of calibrated thresholds in selection proportions for different parameters
controlling the level of sparsity in the underlying algorithm.

PFER a matrix of upper-bounds in PFER of calibrated stability selection models with
different parameters controlling the level of sparsity.

FDP a matrix of upper-bounds in FDP of calibrated stability selection models with
different parameters controlling the level of sparsity.

S_2d a matrix of stability scores obtained with different combinations of parameters.
Columns correspond to different thresholds in selection proportions.

PFER_2d a matrix of upper-bounds in FDP obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.
Only returned if length(pk)=1.

FDP_2d a matrix of upper-bounds in PFER obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.
Only returned if length(pk)=1.

selprop an array of selection proportions. Rows and columns correspond to nodes in
the graph. Indices along the third dimension correspond to different parameters
controlling the level of sparsity in the underlying algorithm.
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sign a matrix of signs of Pearson’s correlations estimated from xdata.

method a list with type="graphical_model" and values used for arguments implementation,
start, resampling, cpss and PFER_method.

params a list with values used for arguments K, pi_list, tau, n_cat, pk, n (number
of observations in xdata), PFER_thr, FDP_thr, seed, lambda_other_blocks,
and Sequential_template.

The rows of S, Lambda, Q, Q_s, P, PFER, FDP, S_2d, PFER_2d and FDP_2d, and indices along the third
dimension of selprop are ordered in the same way and correspond to parameter values stored in
Lambda. For multi-block inference, the columns of S, Lambda, Q, Q_s, P, PFER and FDP, and indices
along the third dimension of S_2d correspond to the different blocks.

References

Bodinier B, Filippi S, Nøst TH, Chiquet J, Chadeau-Hyam M (2023). “Automated calibration for
stability selection in penalised regression and graphical models.” Journal of the Royal Statisti-
cal Society Series C: Applied Statistics, qlad058. ISSN 0035-9254, doi:10.1093/jrsssc/qlad058,
https://academic.oup.com/jrsssc/advance-article-pdf/doi/10.1093/jrsssc/qlad058/50878777/qlad058.pdf.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi:10.1111/j.14679868.2011.01034.x.

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi:10.1111/j.14679868.2010.00740.x.

Friedman J, Hastie T, Tibshirani R (2008). “Sparse inverse covariance estimation with the graphical
lasso.” Biostatistics, 9(3), 432–441.

See Also

PenalisedGraphical, GraphicalAlgo, LambdaGridGraphical, Resample, StabilityScore Graph,
Adjacency,

Other stability functions: BiSelection(), Clustering(), StructuralModel(), VariableSelection()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = rep(7, 4))

## Single-block stability selection

# Data simulation
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, nu_within = 0.1)

# Stability selection
stab <- GraphicalModel(xdata = simul$data)
print(stab)

# Calibration heatmap
CalibrationPlot(stab)

https://doi.org/10.1093/jrsssc/qlad058
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
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# Visualisation of the results
summary(stab)
plot(stab)

# Extraction of adjacency matrix or igraph object
Adjacency(stab)
Graph(stab)

## Multi-block stability selection

# Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = c(10, 10))

# Stability selection
stab <- GraphicalModel(xdata = simul$data, pk = c(10, 10), Lambda_cardinal = 10)
print(stab)

# Calibration heatmap
# par(mfrow = c(1, 3))
CalibrationPlot(stab) # Producing three plots

# Visualisation of the results
summary(stab)
plot(stab)

# Multi-parameter stability selection (not recommended)
Lambda <- matrix(c(0.8, 0.6, 0.3, 0.5, 0.4, 0.3, 0.7, 0.5, 0.1), ncol = 3)
stab <- GraphicalModel(

xdata = simul$data, pk = c(10, 10),
Lambda = Lambda, lambda_other_blocks = NULL

)
stab$Lambda

## Example with user-defined function: shrinkage estimation and selection

# Data simulation
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, nu_within = 0.1)

if (requireNamespace("corpcor", quietly = TRUE)) {
# Writing user-defined algorithm in a portable function
ShrinkageSelection <- function(xdata, Lambda, ...) {
mypcor <- corpcor::pcor.shrink(xdata, verbose = FALSE)
adjacency <- array(NA, dim = c(nrow(mypcor), ncol(mypcor), nrow(Lambda)))
for (k in seq_len(nrow(Lambda))) {

A <- ifelse(abs(mypcor) >= Lambda[k, 1], yes = 1, no = 0)
diag(A) <- 0
adjacency[, , k] <- A

}
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return(list(adjacency = adjacency))
}

# Running the algorithm without stability
myglasso <- GraphicalAlgo(

xdata = simul$data,
Lambda = matrix(c(0.05, 0.1), ncol = 1), implementation = ShrinkageSelection

)

# Stability selection using shrinkage estimation and selection
stab <- GraphicalModel(

xdata = simul$data, Lambda = matrix(c(0.01, 0.05, 0.1), ncol = 1),
implementation = ShrinkageSelection

)
CalibrationPlot(stab)
stable_adjacency <- Adjacency(stab)

}

par(oldpar)

GroupPLS Group Partial Least Squares

Description

Runs a group Partial Least Squares model using implementation from sgPLS-package. This func-
tion is not using stability.

Usage

GroupPLS(
xdata,
ydata,
family = "gaussian",
group_x,
group_y = NULL,
Lambda,
keepX_previous = NULL,
keepY = NULL,
ncomp = 1,
scale = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.
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ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

family type of PLS model. If family="gaussian", a group PLS model as defined
in gPLS is run (for continuous outcomes). If family="binomial", a PLS-DA
model as defined in gPLSda is run (for categorical outcomes).

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group.

group_y optional vector encoding the grouping structure among outcomes. This argu-
ment indicates the number of variables in each group.

Lambda matrix of parameters controlling the number of selected groups at current com-
ponent, as defined by ncomp.

keepX_previous number of selected groups in previous components. Only used if ncomp > 1.
The argument keepX in sgPLS is obtained by concatenating keepX_previous
and Lambda.

keepY number of selected groups of outcome variables. This argument is defined as in
sgPLS. Only used if family="gaussian".

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one). Only used if family="gaussian".

... additional arguments to be passed to gPLS or gPLSda.

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors (starting with "X") or outcomes (starting with
"Y") variables for different components (denoted by "PC").

References

Liquet B, de Micheaux PL, Hejblum BP, Thiébaut R (2016). “Group and sparse group partial least
square approaches applied in genomics context.” Bioinformatics, 32(1), 35-42. ISSN 1367-4803,
doi:10.1093/bioinformatics/btv535.

See Also

VariableSelection, BiSelection

Other penalised dimensionality reduction functions: SparseGroupPLS(), SparsePCA(), SparsePLS()

https://doi.org/10.1093/bioinformatics/btv535
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Examples

if (requireNamespace("sgPLS", quietly = TRUE)) {
## Group PLS
# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, q = 3, family = "gaussian")
x <- simul$xdata
y <- simul$ydata

# Running gPLS with 1 group and sparsity of 0.5
mypls <- GroupPLS(
xdata = x, ydata = y, Lambda = 1, family = "gaussian",
group_x = c(10, 15, 25),

)

# Running gPLS with groups on outcomes
mypls <- GroupPLS(

xdata = x, ydata = y, Lambda = 1, family = "gaussian",
group_x = c(10, 15, 25),
group_y = c(2, 1), keepY = 1

)
}

HierarchicalClustering

(Weighted) hierarchical clustering

Description

Runs hierarchical clustering using implementation from hclust. If Lambda is provided, clustering is
applied on the weighted distance matrix calculated using the cosa2 algorithm. Otherwise, distances
are calculated using dist. This function is not using stability.

Usage

HierarchicalClustering(
xdata,
nc = NULL,
Lambda = NULL,
distance = "euclidean",
linkage = "complete",
...

)

Arguments

xdata data matrix with observations as rows and variables as columns.
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nc matrix of parameters controlling the number of clusters in the underlying algo-
rithm specified in implementation. If nc is not provided, it is set to seq(1,
tau*nrow(xdata)).

Lambda vector of penalty parameters (see argument lambda in cosa2). Unweighted dis-
tance matrices are used if Lambda=NULL.

distance character string indicating the type of distance to use. If Lambda=NULL, pos-
sible values include "euclidean", "maximum", "canberra", "binary", and
"minkowski" (see argument method in dist). Otherwise, possible values in-
clude "euclidean" (pwr=2) or "absolute" (pwr=1) (see argument pwr in cosa2).

linkage character string indicating the type of linkage used in hierarchical clustering to
define the stable clusters. Possible values include "complete", "single" and
"average" (see argument "method" in hclust for a full list). Only used if
implementation=HierarchicalClustering.

... additional parameters passed to hclust, dist, or cosa2. Parameters niter
(default to 1) and noit (default to 100) correspond to the number of iterations
in cosa2 to calculate weights and may need to be modified. Argument pwr in
cosa2 is ignored, please provide distance instead.

Value

A list with:

comembership an array of binary and symmetric co-membership matrices.

weights a matrix of median weights by feature.

References

Kampert MM, Meulman JJ, Friedman JH (2017). “rCOSA: A Software Package for Clustering
Objects on Subsets of Attributes.” Journal of Classification, 34(3), 514–547. doi:10.1007/s00357-
0179240z.

Friedman JH, Meulman JJ (2004). “Clustering objects on subsets of attributes (with discussion).”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(4), 815-849. doi:10.1111/
j.14679868.2004.02059.x, https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.02059.x,
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x.

See Also

Other clustering algorithms: DBSCANClustering(), GMMClustering(), KMeansClustering(),
PAMClustering()

Examples

# Data simulation
set.seed(1)
simul <- SimulateClustering(n = c(10, 10), pk = 50)

# Hierarchical clustering
myhclust <- HierarchicalClustering(

https://doi.org/10.1007/s00357-017-9240-z
https://doi.org/10.1007/s00357-017-9240-z
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x
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xdata = simul$data,
nc = seq_len(20)

)

# Weighted Hierarchical clustering (using COSA)
if (requireNamespace("rCOSA", quietly = TRUE)) {

myhclust <- HierarchicalClustering(
xdata = simul$data,
weighted = TRUE,
nc = seq_len(20),
Lambda = c(0.2, 0.5)

)
}

Incremental Incremental prediction performance in regression

Description

Computes the prediction performance of regression models where predictors are sequentially added
by order of decreasing selection proportion. This function can be used to evaluate the marginal
contribution of each of the selected predictors over and above more stable predictors. Performances
are evaluated as in ExplanatoryPerformance.

Usage

Incremental(
xdata,
ydata,
new_xdata = NULL,
new_ydata = NULL,
stability = NULL,
family = NULL,
implementation = NULL,
prediction = NULL,
resampling = "subsampling",
n_predictors = NULL,
K = 100,
tau = 0.8,
seed = 1,
n_thr = NULL,
time = 1000,
verbose = TRUE,
...

)
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Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

new_xdata optional test set (predictor data).

new_ydata optional test set (outcome data).

stability output of VariableSelection. If stability=NULL (the default), a model in-
cluding all variables in xdata as predictors is fitted. Argument family must be
provided in this case.

family type of regression model. Possible values include "gaussian" (linear regres-
sion), "binomial" (logistic regression), and "cox" (survival analysis). If pro-
vided, this argument must be consistent with input stability.

implementation optional function to refit the model. If implementation=NULL and stability
is the output of VariableSelection, lm (linear regression), coxph (Cox regres-
sion), glm (logistic regression), or multinom (multinomial regression) is used.

prediction optional function to compute predicted values from the model refitted with implementation.

resampling resampling approach to create the training set. The default is "subsampling"
for sampling without replacement of a proportion tau of the observations. Al-
ternatively, this argument can be a function to use for resampling. This function
must use arguments named data and tau and return the IDs of observations to
be included in the resampled dataset.

n_predictors number of predictors to consider.

K number of training-test splits. Only used if new_xdata and new_ydata are not
provided.

tau proportion of observations used in the training set. Only used if new_xdata and
new_ydata are not provided.

seed value of the seed to ensure reproducibility of the results. Only used if new_xdata
and new_ydata are not provided.

n_thr number of thresholds to use to construct the ROC curve. If n_thr=NULL, all
predicted probability values are iteratively used as thresholds. For faster com-
putations on large data, less thresholds can be used. Only applicable to logistic
regression.

time numeric indicating the time for which the survival probabilities are computed.
Only applicable to Cox regression.

verbose logical indicating if a loading bar and messages should be printed.

... additional parameters passed to the function provided in resampling.

Value

An object of class incremental.

For logistic regression, a list with:
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FPR A list with, for each of the models (sequentially added predictors), the False
Positive Rates for different thresholds (columns) and different data splits (rows).

TPR A list with, for each of the models (sequentially added predictors), the True
Positive Rates for different thresholds (columns) and different data splits (rows).

AUC A list with, for each of the models (sequentially added predictors), a vector of
Area Under the Curve (AUC) values obtained with different data splits.

Beta Estimated regression coefficients from visited models.

names Names of the predictors by order of inclusion.

stable Binary vector indicating which predictors are stably selected. Only returned if
stability is provided.

For Cox regression, a list with:

concordance A list with, for each of the models (sequentially added predictors), a vector of
concordance indices obtained with different data splits.

Beta Estimated regression coefficients from visited models.

names Names of the predictors by order of inclusion.

stable Binary vector indicating which predictors are stably selected. Only returned if
stability is provided.

For linear regression, a list with:

Q_squared A list with, for each of the models (sequentially added predictors), a vector of
Q-squared obtained with different data splits.

Beta Estimated regression coefficients from visited models.

names Names of the predictors by order of inclusion.

stable Binary vector indicating which predictors are stably selected. Only returned if
stability is provided.

See Also

VariableSelection, Refit

Other prediction performance functions: ExplanatoryPerformance()

Examples

# Data simulation
set.seed(1)
simul <- SimulateRegression(

n = 1000, pk = 20,
family = "binomial", ev_xy = 0.8

)

# Data split: selection, training and test set
ids <- Split(

data = simul$ydata,
family = "binomial",
tau = c(0.4, 0.3, 0.3)
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)
xselect <- simul$xdata[ids[[1]], ]
yselect <- simul$ydata[ids[[1]], ]
xtrain <- simul$xdata[ids[[2]], ]
ytrain <- simul$ydata[ids[[2]], ]
xtest <- simul$xdata[ids[[3]], ]
ytest <- simul$ydata[ids[[3]], ]

# Stability selection
stab <- VariableSelection(

xdata = xselect,
ydata = yselect,
family = "binomial"

)

# Performances in test set of model refitted in training set
incr <- Incremental(

xdata = xtrain, ydata = ytrain,
new_xdata = xtest, new_ydata = ytest,
stability = stab, n_predictors = 10

)
plot(incr)

# Alternative with multiple training/test splits
incr <- Incremental(

xdata = rbind(xtrain, xtest),
ydata = c(ytrain, ytest),
stability = stab, K = 10, n_predictors = 10

)
plot(incr)

KMeansClustering (Sparse) K-means clustering

Description

Runs k-means clustering using implementation from kmeans. This function is not using stability.

Usage

KMeansClustering(xdata, nc = NULL, Lambda = NULL, ...)

Arguments

xdata data matrix with observations as rows and variables as columns.

nc matrix of parameters controlling the number of clusters in the underlying algo-
rithm specified in implementation. If nc is not provided, it is set to seq(1,
tau*nrow(xdata)).
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Lambda vector of penalty parameters (see argument wbounds in KMeansSparseCluster).

... additional parameters passed to kmeans (if Lambda is NULL) or KMeansSparseCluster.

Value

A list with:

comembership an array of binary and symmetric co-membership matrices.

weights a matrix of median weights by feature.

References

Witten DM, Tibshirani R (2010). “A Framework for Feature Selection in Clustering.” Journal of
the American Statistical Association, 105(490), 713-726. doi:10.1198/jasa.2010.tm09415, PMID:
20811510.

See Also

Other clustering algorithms: DBSCANClustering(), GMMClustering(), HierarchicalClustering(),
PAMClustering()

Examples

# Data simulation
set.seed(1)
simul <- SimulateClustering(n = c(10, 10), pk = 50)

# K means clustering
mykmeans <- KMeansClustering(xdata = simul$data, nc = seq_len(20))

# Sparse K means clustering
if (requireNamespace("sparcl", quietly = TRUE)) {

mykmeans <- KMeansClustering(
xdata = simul$data, nc = seq_len(20),
Lambda = c(2, 5)

)
}

LambdaGridGraphical Grid of penalty parameters (graphical model)

Description

Generates a relevant grid of penalty parameter values for penalised graphical models.

https://doi.org/10.1198/jasa.2010.tm09415
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Usage

LambdaGridGraphical(
xdata,
pk = NULL,
lambda_other_blocks = 0.1,
K = 100,
tau = 0.5,
n_cat = 3,
implementation = PenalisedGraphical,
start = "cold",
scale = TRUE,
resampling = "subsampling",
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
Lambda_cardinal = 50,
lambda_max = NULL,
lambda_path_factor = 0.001,
max_density = 0.5,
...

)

Arguments

xdata data matrix with observations as rows and variables as columns. For multi-block
stability selection, the variables in data have to be ordered by group.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

lambda_other_blocks

optional vector of parameters controlling the level of sparsity in neighbour blocks
for the multi-block procedure. To use jointly a specific set of parameters for each
block, lambda_other_blocks must be set to NULL (not recommended). Only
used for multi-block stability selection, i.e. if length(pk)>1.

K number of resampling iterations.

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

n_cat computation options for the stability score. Default is NULL to use the score
based on a z test. Other possible values are 2 or 3 to use the score based on the
negative log-likelihood.

implementation function to use for graphical modelling. If implementation=PenalisedGraphical,
the algorithm implemented in glassoFast is used for regularised estimation of
a conditional independence graph. Alternatively, a user-defined function can be
provided.

start character string indicating if the algorithm should be initialised at the estimated
(inverse) covariance with previous penalty parameters (start="warm") or not
(start="cold"). Using start="warm" can speed-up the computations, but
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could lead to convergence issues (in particular with small Lambda_cardinal).
Only used for implementation=PenalisedGraphical (see argument "start"
in glassoFast).

scale logical indicating if the correlation (scale=TRUE) or covariance (scale=FALSE)
matrix should be used as input of glassoFast if implementation=PenalisedGraphical.
Otherwise, this argument must be used in the function provided in implementation.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm.

lambda_max optional maximum value for the grid in penalty parameters. If lambda_max=NULL,
the maximum value is set to the maximum covariance in absolute value. Only
used if implementation=PenalisedGraphical.

lambda_path_factor

multiplicative factor used to define the minimum value in the grid.

max_density threshold on the density. The grid is defined such that the density of the esti-
mated graph does not exceed max_density.

... additional parameters passed to the functions provided in implementation or
resampling.

Value

A matrix of lambda values with length(pk) columns and Lambda_cardinal rows.

See Also

Other lambda grid functions: LambdaGridRegression(), LambdaSequence()

Examples

# Single-block simulation
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set.seed(1)
simul <- SimulateGraphical()

# Generating grid of 10 values
Lambda <- LambdaGridGraphical(xdata = simul$data, Lambda_cardinal = 10)

# Ensuring PFER < 5
Lambda <- LambdaGridGraphical(xdata = simul$data, Lambda_cardinal = 10, PFER_thr = 5)

# Multi-block simulation
set.seed(1)
simul <- SimulateGraphical(pk = c(10, 10))

# Multi-block grid
Lambda <- LambdaGridGraphical(xdata = simul$data, pk = c(10, 10), Lambda_cardinal = 10)

# Denser neighbouring blocks
Lambda <- LambdaGridGraphical(

xdata = simul$data, pk = c(10, 10),
Lambda_cardinal = 10, lambda_other_blocks = 0

)

# Using different neighbour penalties
Lambda <- LambdaGridGraphical(

xdata = simul$data, pk = c(10, 10),
Lambda_cardinal = 10, lambda_other_blocks = c(0.1, 0, 0.1)

)
stab <- GraphicalModel(

xdata = simul$data, pk = c(10, 10),
Lambda = Lambda, lambda_other_blocks = c(0.1, 0, 0.1)

)
stab$Lambda

# Visiting from empty to full graphs with max_density=1
Lambda <- LambdaGridGraphical(

xdata = simul$data, pk = c(10, 10),
Lambda_cardinal = 10, max_density = 1

)
bigblocks <- BlockMatrix(pk = c(10, 10))
bigblocks_vect <- bigblocks[upper.tri(bigblocks)]
N_blocks <- unname(table(bigblocks_vect))
N_blocks # max number of edges per block
stab <- GraphicalModel(xdata = simul$data, pk = c(10, 10), Lambda = Lambda)
apply(stab$Q, 2, max, na.rm = TRUE) # max average number of edges from underlying algo

LambdaGridRegression Grid of penalty parameters (regression model)
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Description

Generates a relevant grid of penalty parameter values for penalised regression using the implemen-
tation in glmnet.

Usage

LambdaGridRegression(
xdata,
ydata,
tau = 0.5,
seed = 1,
family = "gaussian",
resampling = "subsampling",
Lambda_cardinal = 100,
check_input = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

seed value of the seed to initialise the random number generator and ensure repro-
ducibility of the results (see set.seed).

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm.

check_input logical indicating if input values should be checked (recommended).

... additional parameters passed to the functions provided in implementation or
resampling.

Value

A matrix of lambda values with one column and as many rows as indicated in Lambda_cardinal.
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See Also

Other lambda grid functions: LambdaGridGraphical(), LambdaSequence()

Examples

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian") # simulated data

# Lambda grid for linear regression
Lambda <- LambdaGridRegression(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", Lambda_cardinal = 20

)

# Grid can be used in VariableSelection()
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", Lambda = Lambda

)
print(SelectedVariables(stab))

LambdaSequence Sequence of penalty parameters

Description

Generates a sequence of penalty parameters from extreme values and the required number of ele-
ments. The sequence is defined on the log-scale.

Usage

LambdaSequence(lmax, lmin, cardinal = 100)

Arguments

lmax maximum value in the grid.

lmin minimum value in the grid.

cardinal number of values in the grid.

Value

A vector with values between "lmin" and "lmax" and as many values as indicated by "cardinal".

See Also

Other lambda grid functions: LambdaGridGraphical(), LambdaGridRegression()
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Examples

# Grid from extreme values
mygrid <- LambdaSequence(lmax = 0.7, lmin = 0.001, cardinal = 10)

LinearSystemMatrix Matrix from linear system outputs

Description

Returns a matrix from output of PenalisedLinearSystem.

Usage

LinearSystemMatrix(vect, adjacency)

Arguments

vect vector of coefficients to assign to entries of the matrix.

adjacency binary adjacency matrix of the Directed Acyclic Graph (transpose of the asym-
metric matrix A in Reticular Action Model notation). The row and column
names of this matrix must be defined.

Value

An asymmetric matrix.

See Also

PenalisedLinearSystem

OpenMxMatrix Matrix from OpenMx outputs

Description

Returns a matrix from output of mxPenaltySearch.

Usage

OpenMxMatrix(vect, adjacency, residual_covariance = NULL)
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Arguments

vect vector of coefficients to assign to entries of the matrix.

adjacency binary adjacency matrix of the Directed Acyclic Graph (transpose of the asym-
metric matrix A in Reticular Action Model notation). The row and column
names of this matrix must be defined.

residual_covariance

binary and symmetric matrix encoding the nonzero entries in the residual co-
variance matrix (symmetric matrix S in Reticular Action Model notation). By
default, this is the identity matrix (no residual covariance).

Value

An asymmetric matrix.

See Also

PenalisedOpenMx, OpenMxModel

OpenMxModel Writing OpenMx model (matrix specification)

Description

Returns matrix specification for use in mxModel from (i) the adjacency matrix of a Directed Acyclic
Graph (asymmetric matrix A in Reticular Action Model notation), and (ii) a binary matrix encoding
nonzero entries in the residual covariance matrix (symmetric matrix S in Reticular Action Model
notation).

Usage

OpenMxModel(adjacency, residual_covariance = NULL, manifest = NULL)

Arguments

adjacency binary adjacency matrix of the Directed Acyclic Graph (transpose of the asym-
metric matrix A in Reticular Action Model notation). The row and column
names of this matrix must be defined.

residual_covariance

binary and symmetric matrix encoding the nonzero entries in the residual co-
variance matrix (symmetric matrix S in Reticular Action Model notation). By
default, this is the identity matrix (no residual covariance).

manifest optional vector of manifest variable names.

Value

A list of RAM matrices that can be used in mxRun.
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See Also

PenalisedOpenMx, OpenMxMatrix

Examples

if (requireNamespace("OpenMx", quietly = TRUE)) {
# Definition of simulated effects
pk <- c(3, 2, 3)
dag <- LayeredDAG(layers = pk)
theta <- dag
theta[2, 4] <- 0
theta[3, 7] <- 0
theta[4, 7] <- 0

# Data simulation
set.seed(1)
simul <- SimulateStructural(n = 500, v_between = 1, theta = theta, pk = pk)

# Writing RAM matrices for mxModel
ram_matrices <- OpenMxModel(adjacency = dag)

# Running unpenalised model
unpenalised <- OpenMx::mxRun(OpenMx::mxModel(

"Model",
OpenMx::mxData(simul$data, type = "raw"),
ram_matrices$Amat,
ram_matrices$Smat,
ram_matrices$Fmat,
ram_matrices$Mmat,
OpenMx::mxExpectationRAM("A", "S", "F", "M", dimnames = colnames(dag)),
OpenMx::mxFitFunctionML()

), silent = TRUE, suppressWarnings = TRUE)
unpenalised$A$values

# Incorporating latent variables
ram_matrices <- OpenMxModel(

adjacency = dag,
manifest = paste0("x", seq_len(7))

)
ram_matrices$Fmat$values

# Running unpenalised model
unpenalised <- OpenMx::mxRun(OpenMx::mxModel(

"Model",
OpenMx::mxData(simul$data[, seq_len(7)], type = "raw"),
ram_matrices$Amat,
ram_matrices$Smat,
ram_matrices$Fmat,
ram_matrices$Mmat,
OpenMx::mxExpectationRAM("A", "S", "F", "M", dimnames = colnames(dag)),
OpenMx::mxFitFunctionML()

), silent = TRUE, suppressWarnings = TRUE)
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unpenalised$A$values
}

PAMClustering (Weighted) Partitioning Around Medoids

Description

Runs Partitioning Around Medoids (PAM) clustering using implementation from pam. This is also
known as the k-medoids algorithm. If Lambda is provided, clustering is applied on the weighted dis-
tance matrix calculated using the COSA algorithm as implemented in cosa2. Otherwise, distances
are calculated using dist. This function is not using stability.

Usage

PAMClustering(xdata, nc = NULL, Lambda = NULL, distance = "euclidean", ...)

Arguments

xdata data matrix with observations as rows and variables as columns.
nc matrix of parameters controlling the number of clusters in the underlying algo-

rithm specified in implementation. If nc is not provided, it is set to seq(1,
tau*nrow(xdata)).

Lambda vector of penalty parameters (see argument lambda in cosa2). Unweighted dis-
tance matrices are used if Lambda=NULL.

distance character string indicating the type of distance to use. If Lambda=NULL, pos-
sible values include "euclidean", "maximum", "canberra", "binary", and
"minkowski" (see argument method in dist). Otherwise, possible values in-
clude "euclidean" (pwr=2) or "absolute" (pwr=1) (see argument pwr in cosa2).

... additional parameters passed to pam, dist, or cosa2. If weighted=TRUE, param-
eters niter (default to 1) and noit (default to 100) correspond to the number of
iterations in cosa2 to calculate weights and may need to be modified.

Value

A list with:

comembership an array of binary and symmetric co-membership matrices.
weights a matrix of median weights by feature.

References

Kampert MM, Meulman JJ, Friedman JH (2017). “rCOSA: A Software Package for Clustering
Objects on Subsets of Attributes.” Journal of Classification, 34(3), 514–547. doi:10.1007/s00357-
0179240z.
Friedman JH, Meulman JJ (2004). “Clustering objects on subsets of attributes (with discussion).”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(4), 815-849. doi:10.1111/
j.14679868.2004.02059.x, https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2004.02059.x,
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x.

https://doi.org/10.1007/s00357-017-9240-z
https://doi.org/10.1007/s00357-017-9240-z
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://doi.org/10.1111/j.1467-9868.2004.02059.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2004.02059.x
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See Also

Other clustering algorithms: DBSCANClustering(), GMMClustering(), HierarchicalClustering(),
KMeansClustering()

Examples

if (requireNamespace("cluster", quietly = TRUE)) {
# Data simulation
set.seed(1)
simul <- SimulateClustering(n = c(10, 10), pk = 50)

# PAM clustering
myclust <- PAMClustering(
xdata = simul$data,
nc = seq_len(20)

)

# Weighted PAM clustering (using COSA)
if (requireNamespace("rCOSA", quietly = TRUE)) {

myclust <- PAMClustering(
xdata = simul$data,
nc = seq_len(20),
Lambda = c(0.2, 0.5)

)
}

}

PenalisedGraphical Graphical LASSO

Description

Runs the graphical LASSO algorithm for estimation of a Gaussian Graphical Model (GGM). This
function is not using stability.

Usage

PenalisedGraphical(
xdata,
pk = NULL,
Lambda,
Sequential_template = NULL,
scale = TRUE,
start = "cold",
output_omega = FALSE,
...

)
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Arguments

xdata matrix with observations as rows and variables as columns.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

Lambda matrix of parameters controlling the level of sparsity.

Sequential_template

logical matrix encoding the type of procedure to use for data with multiple
blocks in stability selection graphical modelling. For multi-block estimation,
the stability selection model is constructed as the union of block-specific stable
edges estimated while the others are weakly penalised (TRUE only for the block
currently being calibrated and FALSE for other blocks). Other approaches with
joint calibration of the blocks are allowed (all entries are set to TRUE).

scale logical indicating if the correlation (scale=TRUE) or covariance (scale=FALSE)
matrix should be used as input of glassoFast if implementation=PenalisedGraphical.
Otherwise, this argument must be used in the function provided in implementation.

start character string indicating if the algorithm should be initialised at the estimated
(inverse) covariance with previous penalty parameters (start="warm") or not
(start="cold"). Using start="warm" can speed-up the computations, but
could lead to convergence issues (in particular with small Lambda_cardinal).
Only used for implementation=PenalisedGraphical (see argument "start"
in glassoFast).

output_omega logical indicating if the estimated precision matrices should be stored and re-
turned.

... additional parameters passed to the function provided in implementation.

Details

The use of the procedure from Equation (4) or (5) is controlled by the argument "Sequential_template".

Value

An array with binary and symmetric adjacency matrices along the third dimension.

References

Friedman J, Hastie T, Tibshirani R (2008). “Sparse inverse covariance estimation with the graphical
lasso.” Biostatistics, 9(3), 432–441.

See Also

GraphicalModel

Other underlying algorithm functions: CART(), ClusteringAlgo(), PenalisedOpenMx(), PenalisedRegression()



PenalisedOpenMx 73

Examples

# Data simulation
set.seed(1)
simul <- SimulateGraphical()

# Running graphical LASSO
myglasso <- PenalisedGraphical(

xdata = simul$data,
Lambda = matrix(c(0.1, 0.2), ncol = 1)

)

# Returning estimated precision matrix
myglasso <- PenalisedGraphical(

xdata = simul$data,
Lambda = matrix(c(0.1, 0.2), ncol = 1),
output_omega = TRUE

)

PenalisedOpenMx Penalised Structural Equation Model

Description

Runs penalised Structural Equation Modelling using implementations from OpenMx functions (for
PenalisedOpenMx), or using series of penalised regressions with glmnet (for PenalisedLinearSystem).
The function PenalisedLinearSystem does not accommodate latent variables. These functions are
not using stability.

Usage

PenalisedOpenMx(
xdata,
adjacency,
penalised = NULL,
residual_covariance = NULL,
Lambda,
...

)

PenalisedLinearSystem(xdata, adjacency, penalised = NULL, Lambda = NULL, ...)

Arguments

xdata matrix with observations as rows and variables as columns. Column names must
be defined and in line with the row and column names of adjacency.

adjacency binary adjacency matrix of the Directed Acyclic Graph (transpose of the asym-
metric matrix A in Reticular Action Model notation). The row and column
names of this matrix must be defined.
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penalised optional binary matrix indicating which coefficients are regularised.
residual_covariance

binary and symmetric matrix encoding the nonzero entries in the residual co-
variance matrix (symmetric matrix S in Reticular Action Model notation). By
default, this is the identity matrix (no residual covariance).

Lambda matrix of parameters controlling the level of sparsity. Only the minimum, max-
imum and length are used in PenalisedOpenMx.

... additional parameters passed to OpenMx functions (for PenalisedOpenMx), or
glmnet (for PenalisedLinearSystem).

Value

A list with:

selected matrix of binary selection status. Rows correspond to different regularisation
parameters. Columns correspond to different parameters to estimated.

beta_full matrix of model coefficients. Rows correspond to different regularisation pa-
rameters. Columns correspond to different parameters to estimated.

References

Jacobucci R, Grimm KJ, McArdle JJ (2016). “Regularized structural equation modeling.” Struc-
tural equation modeling: a multidisciplinary journal, 23(4), 555–566. doi:10.1080/10705511.2016.1154793.

See Also

SelectionAlgo, VariableSelection, OpenMxMatrix, LinearSystemMatrix

Other underlying algorithm functions: CART(), ClusteringAlgo(), PenalisedGraphical(), PenalisedRegression()

Examples

# Data simulation
pk <- c(3, 2, 3)
dag <- LayeredDAG(layers = pk)
theta <- dag
theta[2, 4] <- 0
set.seed(1)
simul <- SimulateStructural(theta = theta, pk = pk, output_matrices = TRUE)

# Running regularised SEM (OpenMx)
if (requireNamespace("OpenMx", quietly = TRUE)) {

mysem <- PenalisedOpenMx(
xdata = simul$data, adjacency = dag,
Lambda = seq(1, 10, 1)

)
OpenMxMatrix(vect = mysem$selected[3, ], adjacency = dag)

}

# Running regularised SEM (glmnet)
mysem <- PenalisedLinearSystem(

https://doi.org/10.1080/10705511.2016.1154793
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xdata = simul$data, adjacency = dag
)
LinearSystemMatrix(vect = mysem$selected[20, ], adjacency = dag)

PenalisedRegression Penalised regression

Description

Runs penalised regression using implementation from glmnet. This function is not using stability.

Usage

PenalisedRegression(
xdata,
ydata,
Lambda = NULL,
family,
penalisation = c("classic", "randomised", "adaptive"),
gamma = NULL,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the level of sparsity.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

penalisation type of penalisation to use. If penalisation="classic" (the default), pe-
nalised regression is done with the same regularisation parameter, or using penalty.factor,
if specified. If penalisation="randomised", the regularisation for each of the
variables is uniformly chosen between lambda and lambda/gamma. If penalisation="adaptive",
the regularisation for each of the variables is weighted by 1/abs(beta)^gamma
where beta is the regression coefficient obtained from unpenalised regression.

gamma parameter for randomised or adaptive regularisation. Default is gamma=0.5 for
randomised regularisation and gamma=2 for adaptive regularisation. The param-
eter gamma should be between 0 and 1 for randomised regularisation.

... additional parameters passed to glmnet.
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Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors. Indices along the third dimension correspond
to outcome variable(s).

References

Zou H (2006). “The adaptive lasso and its oracle properties.” Journal of the American statistical
association, 101(476), 1418–1429.

Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society. Series B (Methodological), 58(1), 267–288. ISSN 00359246, http://www.
jstor.org/stable/2346178.

See Also

SelectionAlgo, VariableSelection

Other underlying algorithm functions: CART(), ClusteringAlgo(), PenalisedGraphical(), PenalisedOpenMx()

Examples

# Data simulation
set.seed(1)
simul <- SimulateRegression(pk = 50)

# Running the LASSO
mylasso <- PenalisedRegression(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = c(0.1, 0.2), family = "gaussian"

)

# Using glmnet arguments
mylasso <- PenalisedRegression(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = c(0.1), family = "gaussian",
penalty.factor = c(rep(0, 10), rep(1, 40))

)
mylasso$beta_full

http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
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PFER Per Family Error Rate

Description

Computes the Per Family Error Rate upper-bound of a stability selection model using the methods
proposed by Meinshausen and Bühlmann (2010) or Shah and Samworth (2013). In stability selec-
tion, the PFER corresponds to the expected number of stably selected features that are not relevant
to the outcome (i.e. False Positives).

Usage

PFER(q, pi, N, K, PFER_method = "MB")

Arguments

q average number of features selected by the underlying algorithm.
pi threshold in selection proportions.
N total number of features.
K number of resampling iterations.
PFER_method method used to compute the upper-bound of the expected number of False Posi-

tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

Value

The estimated upper-bound in PFER.

References

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi:10.1111/j.14679868.2010.00740.x.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi:10.1111/j.14679868.2011.01034.x.

See Also

Other stability metric functions: ConsensusScore(), FDP(), StabilityMetrics(), StabilityScore()

Examples

# Computing PFER for 10/50 selected features and threshold of 0.8
pfer_mb <- PFER(q = 10, pi = 0.8, N = 50, K = 100, PFER_method = "MB")
pfer_ss <- PFER(q = 10, pi = 0.8, N = 50, K = 100, PFER_method = "SS")

https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x
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plot.clustering Consensus matrix heatmap

Description

Creates a heatmap of the (calibrated) consensus matrix. See examples in Clustering.

Usage

## S3 method for class 'clustering'
plot(
x,
linkage = "complete",
argmax_id = NULL,
theta = NULL,
theta_star = NULL,
col = c("ivory", "navajowhite", "tomato", "darkred"),
lines = TRUE,
col.lines = c("blue"),
lwd.lines = 2,
tick = TRUE,
axes = TRUE,
col.axis = NULL,
cex.axis = 1,
xlas = 2,
ylas = 2,
bty = "n",
...

)

Arguments

x output of Clustering.

linkage character string indicating the type of linkage used in hierarchical clustering to
define the stable clusters. Possible values include "complete", "single" and
"average" (see argument "method" in hclust for a full list).

argmax_id optional indices of hyper-parameters. If argmax_id=NULL, the calibrated hyper-
parameters are used.

theta optional vector of cluster membership. If provided, the ordering of the items
should be the same as in Clusters. This argument is used to re-order the con-
sensus matrix.

theta_star optional vector of true cluster membership. If provided, the ordering of the
items should be the same as in Clusters. This argument is used to define item
colours.

col vector of colours.
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lines logical indicating if lines separating the clusters provided in theta should be
displayed.

col.lines colour of the lines separating the clusters.

lwd.lines width of the lines separating the clusters.

tick logical indicating if axis tickmarks should be displayed.

axes logical indicating if item labels should be displayed.

col.axis optional vector of cluster colours.

cex.axis font size for axes.

xlas orientation of labels on the x-axis, as las in par.

ylas orientation of labels on the y-axis, as las in par.

bty character string indicating if the box around the plot should be drawn. Possible
values include: "o" (default, the box is drawn), or "n" (no box).

... additional arguments passed to Heatmap.

Value

A heatmap.

plot.incremental Plot of incremental performance

Description

Represents prediction performances upon sequential inclusion of the predictors in a logistic or Cox
regression model as produced by Incremental. The median and quantiles of the performance
metric are reported. See examples in Incremental.

Usage

## S3 method for class 'incremental'
plot(
x,
quantiles = c(0.05, 0.95),
col = c("red", "grey"),
col.axis = NULL,
xgrid = FALSE,
ygrid = FALSE,
output_data = FALSE,
...

)

IncrementalPlot(
x,
quantiles = c(0.05, 0.95),
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col = c("red", "grey"),
col.axis = NULL,
xgrid = FALSE,
ygrid = FALSE,
output_data = FALSE,
...

)

PlotIncremental(
x,
quantiles = c(0.05, 0.95),
col = c("red", "grey"),
col.axis = NULL,
xgrid = FALSE,
ygrid = FALSE,
output_data = FALSE,
...

)

Arguments

x output of Incremental.
quantiles quantiles defining the lower and upper bounds.
col vector of colours by stable selection status.
col.axis optional vector of label colours by stable selection status.
xgrid logical indicating if a vertical grid should be drawn.
ygrid logical indicating if a horizontal grid should be drawn.
output_data logical indicating if the median and quantiles should be returned in a matrix.
... additional plotting arguments (see par).

Value

A plot.

See Also

Incremental

plot.roc_band Receiver Operating Characteristic (ROC) band

Description

Plots the True Positive Rate (TPR) as a function of the False Positive Rate (FPR) for different thresh-
olds in predicted probabilities. If the results from multiple ROC analyses are provided (e.g. output
of ExplanatoryPerformance with large K), the point-wise median is represented and flanked by a
transparent band defined by point-wise quantiles. See examples in ROC and ExplanatoryPerformance.
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Usage

## S3 method for class 'roc_band'
plot(
x,
col_band = NULL,
alpha = 0.5,
quantiles = c(0.05, 0.95),
add = FALSE,
...

)

Arguments

x output of ROC or ExplanatoryPerformance.
col_band colour of the band defined by point-wise quantiles.
alpha level of opacity for the band.
quantiles point-wise quantiles of the performances defining the band.
add logical indicating if the curve should be added to the current plot.
... additional plotting arguments (see par).

Value

A base plot.

See Also

ROC, ExplanatoryPerformance

plot.variable_selection

Plot of selection proportions

Description

Makes a barplot of selection proportions in decreasing order. See examples in VariableSelection.

Usage

## S3 method for class 'variable_selection'
plot(
x,
col = c("red", "grey"),
col.axis = NULL,
col.thr = "darkred",
lty.thr = 2,
n_predictors = NULL,
...

)
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Arguments

x output of VariableSelection.

col vector of colours by stable selection status.

col.axis optional vector of label colours by stable selection status.

col.thr threshold colour.

lty.thr threshold line type as lty in par.

n_predictors number of predictors to display.

... additional plotting arguments (see par).

Value

A plot.

See Also

VariableSelection

PLS Partial Least Squares ’a la carte’

Description

Runs a Partial Least Squares (PLS) model in regression mode using algorithm implemented in pls.
This function allows for the construction of components based on different sets of predictor and/or
outcome variables. This function is not using stability.

Usage

PLS(
xdata,
ydata,
selectedX = NULL,
selectedY = NULL,
family = "gaussian",
ncomp = NULL,
scale = TRUE

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.
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selectedX binary matrix of size (ncol(xdata) * ncomp). The binary entries indicate which
predictors (in rows) contribute to the definition of each component (in columns).
If selectedX=NULL, all predictors are selected for all components.

selectedY binary matrix of size (ncol(ydata) * ncomp). The binary entries indicate which
outcomes (in rows) contribute to the definition of each component (in columns).
If selectedY=NULL, all outcomes are selected for all components.

family type of PLS model. Only family="gaussian" is supported. This corresponds
to a PLS model as defined in pls (for continuous outcomes).

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one).

Details

All matrices are defined as in (Wold et al. 2001). The weight matrix Wmat is the equivalent of
loadings$X in pls. The loadings matrix Pmat is the equivalent of mat.c in pls. The score matrices
Tmat and Qmat are the equivalent of variates$X and variates$Y in pls.

Value

A list with:

Wmat matrix of X-weights.

Wstar matrix of transformed X-weights.

Pmat matrix of X-loadings.

Cmat matrix of Y-weights.

Tmat matrix of X-scores.

Umat matrix of Y-scores.

Qmat matrix needed for predictions.

Rmat matrix needed for predictions.

meansX vector used for centering of predictors, needed for predictions.

sigmaX vector used for scaling of predictors, needed for predictions.

meansY vector used for centering of outcomes, needed for predictions.

sigmaY vector used for scaling of outcomes, needed for predictions.

methods a list with family and scale values used for the run.

params a list with selectedX and selectedY values used for the run.

References

Wold S, Sjöström M, Eriksson L (2001). “PLS-regression: a basic tool of chemometrics.” Chemo-
metrics and Intelligent Laboratory Systems, 58(2), 109-130. ISSN 0169-7439, doi:10.1016/S0169-
7439(01)001551, PLS Methods.

https://doi.org/10.1016/S0169-7439%2801%2900155-1
https://doi.org/10.1016/S0169-7439%2801%2900155-1
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See Also

VariableSelection, BiSelection

Examples

if (requireNamespace("mixOmics", quietly = TRUE)) {
oldpar <- par(no.readonly = TRUE)

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 15, q = 3, family = "gaussian")
x <- simul$xdata
y <- simul$ydata

# PLS
mypls <- PLS(xdata = x, ydata = y, ncomp = 3)

if (requireNamespace("sgPLS", quietly = TRUE)) {
# Sparse PLS to identify relevant variables
stab <- BiSelection(

xdata = x, ydata = y,
family = "gaussian", ncomp = 3,
LambdaX = seq_len(ncol(x) - 1),
LambdaY = seq_len(ncol(y) - 1),
implementation = SparsePLS,
n_cat = 2

)
plot(stab)

# Refitting of PLS model
mypls <- PLS(

xdata = x, ydata = y,
selectedX = stab$selectedX,
selectedY = stab$selectedY

)

# Nonzero entries in weights are the same as in selectedX
par(mfrow = c(2, 2))
Heatmap(stab$selectedX,

legend = FALSE
)
title("Selected in X")
Heatmap(ifelse(mypls$Wmat != 0, yes = 1, no = 0),

legend = FALSE
)
title("Nonzero entries in Wmat")
Heatmap(stab$selectedY,

legend = FALSE
)
title("Selected in Y")
Heatmap(ifelse(mypls$Cmat != 0, yes = 1, no = 0),

legend = FALSE
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)
title("Nonzero entries in Cmat")

}

# Multilevel PLS
# Generating random design
z <- rep(seq_len(50), each = 4)

# Extracting the within-variability
x_within <- mixOmics::withinVariation(X = x, design = cbind(z))

# Running PLS on within-variability
mypls <- PLS(xdata = x_within, ydata = y, ncomp = 3)

par(oldpar)
}

predict.variable_selection

Predict method for stability selection

Description

Computes predicted values from the output of VariableSelection.

Usage

## S3 method for class 'variable_selection'
predict(
object,
xdata,
ydata,
newdata = NULL,
method = c("ensemble", "refit"),
...

)

Arguments

object output of VariableSelection.

xdata predictor data (training set).

ydata outcome data (training set).

newdata optional predictor data (test set).

method character string indicating if predictions should be obtained from an Ensemble
model (if method="ensemble") or a Refitted model (if method="refit").

... additional arguments passed to predict.
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Value

Predicted values.

See Also

Refit, Ensemble, EnsemblePredictions

Examples

## Linear regression

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 500, pk = 50, family = "gaussian")

# Training/test split
ids <- Split(data = simul$ydata, tau = c(0.8, 0.2))

# Stability selection
stab <- VariableSelection(

xdata = simul$xdata[ids[[1]], ],
ydata = simul$ydata[ids[[1]], ]

)

# Predictions from post stability selection estimation
yhat <- predict(stab,

xdata = simul$xdata[ids[[1]], ],
ydata = simul$ydata[ids[[1]], ],
newdata = simul$xdata[ids[[2]], ],
method = "refit"

)
cor(simul$ydata[ids[[2]], ], yhat)^2 # Q-squared

# Predictions from ensemble model
yhat <- predict(stab,

xdata = simul$xdata[ids[[1]], ],
ydata = simul$ydata[ids[[1]], ],
newdata = simul$xdata[ids[[2]], ],
method = "ensemble"

)
cor(simul$ydata[ids[[2]], ], yhat)^2 # Q-squared

## Logistic regression

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 500, pk = 20, family = "binomial", ev_xy = 0.9)

# Training/test split
ids <- Split(data = simul$ydata, family = "binomial", tau = c(0.8, 0.2))
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# Stability selection
stab <- VariableSelection(

xdata = simul$xdata[ids[[1]], ],
ydata = simul$ydata[ids[[1]], ],
family = "binomial"

)

# Predictions from post stability selection estimation
yhat <- predict(stab,

xdata = simul$xdata[ids[[1]], ],
ydata = simul$ydata[ids[[1]], ],
newdata = simul$xdata[ids[[2]], ],
method = "refit", type = "response"

)
plot(ROC(predicted = yhat, observed = simul$ydata[ids[[2]], ]))

# Predictions from ensemble model
yhat <- predict(stab,

xdata = simul$xdata[ids[[1]], ],
ydata = simul$ydata[ids[[1]], ],
newdata = simul$xdata[ids[[2]], ],
method = "ensemble", type = "response"

)
plot(ROC(predicted = yhat, observed = simul$ydata[ids[[2]], ]),

add = TRUE,
col = "blue"

)

PredictPLS Partial Least Squares predictions

Description

Computes predicted values from a Partial Least Squares (PLS) model in regression mode applied
on xdata. This function is using the algorithm implemented in predict.pls.

Usage

PredictPLS(xdata, model)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

model output of PLS.

Value

An array of predicted values.
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See Also

PLS

Examples

if (requireNamespace("mixOmics", quietly = TRUE)) {
# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = c(5, 5, 5), family = "gaussian")
x <- simul$xdata
y <- simul$ydata

# PLS
mypls <- PLS(xdata = x, ydata = y, ncomp = 3)

# Predicted values
predicted <- PredictPLS(xdata = x, model = mypls)

}

Refit Regression model refitting

Description

Refits the regression model with stably selected variables as predictors (without penalisation). Vari-
ables in xdata not evaluated in the stability selection model will automatically be included as pre-
dictors.

Usage

Refit(
xdata,
ydata,
stability = NULL,
family = NULL,
implementation = NULL,
Lambda = NULL,
seed = 1,
verbose = TRUE,
...

)

Recalibrate(
xdata,
ydata,
stability = NULL,
family = NULL,
implementation = NULL,
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Lambda = NULL,
seed = 1,
verbose = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

stability output of VariableSelection or BiSelection. If stability=NULL (the de-
fault), a model including all variables in xdata as predictors is fitted. Argument
family must be provided in this case.

family type of regression model. Possible values include "gaussian" (linear regres-
sion), "binomial" (logistic regression), "multinomial" (multinomial regres-
sion), and "cox" (survival analysis). If provided, this argument must be consis-
tent with input stability.

implementation optional function to refit the model. If stability is the output of VariableSelection,
a regression model is refitted. If implementation=NULL and Lambda=0, this
is done using lm (for linear regression), coxph (Cox regression), glm (logistic
regression), or multinom (multinomial regression). If Lambda=NULL, a Ridge
regression is fitted and calibrated by cross validation using cv.glmnet. The
function PLS is used if stability is the output of BiSelection.

Lambda optional vector of penalty parameters.

seed value of the seed to initialise the random number generator and ensure repro-
ducibility of the results (see set.seed).

verbose logical indicating if a loading bar and messages should be printed.

... additional arguments to be passed to the function provided in implementation.

Value

The output as obtained from:

\link[stats]{lm}

for linear regression ("gaussian" family).
\link[survival]{coxph}

for Cox regression ("cox" family).
\link[stats]{glm}

for logistic regression ("binomial" family).
\link[nnet]{multinom}

for multinomial regression ("multinomial" family).

See Also

VariableSelection
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Examples

## Linear regression

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")

# Data split
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "gaussian"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
xrefit <- simul$xdata[-ids_train, , drop = FALSE]
yrefit <- simul$ydata[-ids_train, , drop = FALSE]

# Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "gaussian")
print(SelectedVariables(stab))

# Refitting the model
refitted <- Refit(

xdata = xrefit, ydata = yrefit,
stability = stab

)
refitted$coefficients # refitted coefficients
head(refitted$fitted.values) # refitted predicted values

# Fitting the full model (including all possible predictors)
refitted <- Refit(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian"

)
refitted$coefficients # refitted coefficients

## Logistic regression

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 20, family = "binomial")

# Data split
ids_train <- Resample(

data = simul$ydata,
tau = 0.5, family = "binomial"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
xrefit <- simul$xdata[-ids_train, , drop = FALSE]
yrefit <- simul$ydata[-ids_train, , drop = FALSE]
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# Stability selection
stab <- VariableSelection(xdata = xtrain, ydata = ytrain, family = "binomial")

# Refitting the model
refitted <- Refit(

xdata = xrefit, ydata = yrefit,
stability = stab

)
refitted$coefficients # refitted coefficients
head(refitted$fitted.values) # refitted predicted probabilities

## Partial Least Squares (multiple components)
if (requireNamespace("sgPLS", quietly = TRUE)) {

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 500, pk = 15, q = 3, family = "gaussian")

# Data split
ids_train <- Resample(
data = simul$ydata,
tau = 0.5, family = "gaussian"

)
xtrain <- simul$xdata[ids_train, , drop = FALSE]
ytrain <- simul$ydata[ids_train, , drop = FALSE]
xrefit <- simul$xdata[-ids_train, , drop = FALSE]
yrefit <- simul$ydata[-ids_train, , drop = FALSE]

# Stability selection
stab <- BiSelection(

xdata = xtrain, ydata = ytrain,
family = "gaussian", ncomp = 3,
LambdaX = seq_len(ncol(xtrain) - 1),
LambdaY = seq_len(ncol(ytrain) - 1),
implementation = SparsePLS

)
plot(stab)

# Refitting the model
refitted <- Refit(

xdata = xrefit, ydata = yrefit,
stability = stab

)
refitted$Wmat # refitted X-weights
refitted$Cmat # refitted Y-weights

}

Resample Resampling observations
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Description

Generates a vector of resampled observation IDs.

Usage

Resample(data, family = NULL, tau = 0.5, resampling = "subsampling", ...)

Arguments

data vector or matrix of data. In regression, this should be the outcome data.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

... additional parameters passed to the function provided in resampling.

Details

With categorical outcomes (i.e. "family" argument is set to "binomial", "multinomial" or "cox"),
the resampling is done such that the proportion of observations from each of the categories is rep-
resentative of that of the full sample.

Value

A vector of resampled IDs.

Examples

## Linear regression framework
# Data simulation
simul <- SimulateRegression()

# Subsampling
ids <- Resample(data = simul$ydata, family = "gaussian")
sum(duplicated(ids))

# Bootstrapping
ids <- Resample(data = simul$ydata, family = "gaussian", resampling = "bootstrap")
sum(duplicated(ids))

## Logistic regression framework
# Data simulation
simul <- SimulateRegression(family = "binomial")
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# Subsampling
ids <- Resample(data = simul$ydata, family = "binomial")
sum(duplicated(ids))
prop.table(table(simul$ydata))
prop.table(table(simul$ydata[ids]))

# Data simulation for a binary confounder
conf <- ifelse(runif(n = 100) > 0.5, yes = 1, no = 0)

# User-defined resampling function
BalancedResampling <- function(data, tau, Z, ...) {

s <- NULL
for (z in unique(Z)) {
s <- c(s, sample(which((data == "0") & (Z == z)), size = tau * sum((data == "0") & (Z == z))))
s <- c(s, sample(which((data == "1") & (Z == z)), size = tau * sum((data == "1") & (Z == z))))
}
return(s)

}

# Resampling keeping proportions by Y and Z
ids <- Resample(data = simul$ydata, family = "binomial", resampling = BalancedResampling, Z = conf)
prop.table(table(simul$ydata, conf))
prop.table(table(simul$ydata[ids], conf[ids]))

# User-defined resampling for stability selection
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata, family = "binomial",
resampling = BalancedResampling, Z = conf

)

SelectionAlgo Variable selection algorithm

Description

Runs the variable selection algorithm specified in the argument implementation. This function is
not using stability.

Usage

SelectionAlgo(
xdata,
ydata = NULL,
Lambda,
group_x = NULL,
scale = TRUE,
family = NULL,
implementation = PenalisedRegression,
...

)
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Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the level of sparsity in the underlying fea-
ture selection algorithm specified in implementation. If Lambda=NULL and
implementation=PenalisedRegression, LambdaGridRegression is used to
define a relevant grid.

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group. Only used for models with group
penalisation (e.g. implementation=GroupPLS or implementation=SparseGroupPLS).

scale logical indicating if the predictor data should be scaled.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

implementation function to use for variable selection. Possible functions are: PenalisedRegression,
SparsePLS, GroupPLS and SparseGroupPLS. Alternatively, a user-defined func-
tion can be provided.

... additional parameters passed to the function provided in implementation.

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors. Indices along the third dimension correspond
to outcome variable(s).

See Also

VariableSelection, PenalisedRegression, SparsePCA, SparsePLS, GroupPLS, SparseGroupPLS

Other wrapping functions: GraphicalAlgo()

Examples

# Data simulation (univariate outcome)
set.seed(1)
simul <- SimulateRegression(pk = 50)

# Running the LASSO
mylasso <- SelectionAlgo(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = c(0.1, 0.2), family = "gaussian",

)
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# Data simulation (multivariate outcome)
set.seed(1)
simul <- SimulateRegression(pk = 50, q = 3)

# Running multivariate Gaussian LASSO
mylasso <- SelectionAlgo(

xdata = simul$xdata, ydata = simul$ydata,
Lambda = c(0.1, 0.2), family = "mgaussian"

)
str(mylasso)

SelectionPerformance Selection performance

Description

Computes different metrics of selection performance by comparing the set of selected features to
the set of true predictors/edges. This function can only be used in simulation studies (i.e. when the
true model is known).

Usage

SelectionPerformance(theta, theta_star, pk = NULL, cor = NULL, thr = 0.5)

Arguments

theta output from VariableSelection, BiSelection, or GraphicalModel. Alterna-
tively, it can be a binary matrix of selected variables (in variable selection) or a
binary adjacency matrix (in graphical modelling)

theta_star output from SimulateRegression, SimulateComponents, or SimulateGraphical.
Alternatively, it can be a binary matrix of true predictors (in variable selection)
or the true binary adjacency matrix (in graphical modelling).

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

cor optional correlation matrix. Only used in graphical modelling.

thr optional threshold in correlation. Only used in graphical modelling and when
argument "cor" is not NULL.

Value

A matrix of selection metrics including:

TP number of True Positives (TP)

FN number of False Negatives (TN)

FP number of False Positives (FP)
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TN number of True Negatives (TN)

sensitivity sensitivity, i.e. TP/(TP+FN)

specificity specificity, i.e. TN/(TN+FP)

accuracy accuracy, i.e. (TP+TN)/(TP+TN+FP+FN)

precision precision (p), i.e. TP/(TP+FP)

recall recall (r), i.e. TP/(TP+FN)

F1_score F1-score, i.e. 2*p*r/(p+r)

If argument "cor" is provided, the number of False Positives among correlated (FP_c) and uncorre-
lated (FP_i) pairs, defined as having correlations (provided in "cor") above or below the threshold
"thr", are also reported.

Block-specific performances are reported if "pk" is not NULL. In this case, the first row of the
matrix corresponds to the overall performances, and subsequent rows correspond to each of the
blocks. The order of the blocks is defined as in BlockStructure.

See Also

Other functions for model performance: ClusteringPerformance(), SelectionPerformanceGraph()

Examples

# Variable selection model
set.seed(1)
simul <- SimulateRegression(pk = 30, nu_xy = 0.5)
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)

# Selection performance
SelectionPerformance(theta = stab, theta_star = simul)

# Alternative formulation
SelectionPerformance(

theta = SelectedVariables(stab),
theta_star = simul$theta

)

SelectionPerformanceGraph

Graph representation of selection performance

Description

Generates an igraph object representing the True Positive, False Positive and False Negative edges
by comparing the set of selected edges to the set of true edges. This function can only be used in
simulation studies (i.e. when the true model is known).
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Usage

SelectionPerformanceGraph(
theta,
theta_star,
col = c("tomato", "forestgreen", "navy"),
lty = c(2, 3, 1),
node_colour = NULL,
show_labels = TRUE,
...

)

Arguments

theta binary adjacency matrix or output of GraphicalModel, VariableSelection,
or BiSelection.

theta_star true binary adjacency matrix or output of SimulateGraphical or SimulateRegression.

col vector of edge colours. The first entry of the vector defines the colour of False
Positive edges, second entry is for True Negatives and third entry is for True
Positives.

lty vector of line types for edges. The order is defined as for argument col.

node_colour optional vector of node colours. This vector must contain as many entries as
there are rows/columns in the adjacency matrix and must be in the same order
(the order is used to assign colours to nodes). Integers, named colours or RGB
values can be used.

show_labels logical indicating if the node labels should be displayed.

... additional arguments to be passed to Graph.

Value

An igraph object.

See Also

SimulateGraphical, SimulateRegression, GraphicalModel, VariableSelection, BiSelection

Other functions for model performance: ClusteringPerformance(), SelectionPerformance()

Examples

# Data simulation
set.seed(1)
simul <- SimulateGraphical(pk = 30)

# Stability selection
stab <- GraphicalModel(xdata = simul$data, K = 10)

# Performance graph
perfgraph <- SelectionPerformanceGraph(
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theta = stab,
theta_star = simul

)
plot(perfgraph)

SelectionProportions Selection/co-membership proportions

Description

Extracts selection proportions (for stability selection) or co-membership proportions (for consensus
clustering).

Usage

SelectionProportions(stability, argmax_id = NULL)

ConsensusMatrix(stability, argmax_id = NULL)

Arguments

stability output of VariableSelection, GraphicalModel, BiSelection, or Clustering.

argmax_id optional indices of hyper-parameters. If argmax_id=NULL, the calibrated hyper-
parameters are used.

Value

A vector or matrix of proportions.

See Also

VariableSelection, GraphicalModel, BiSelection, Clustering

Examples

# Stability selection
set.seed(1)
simul <- SimulateRegression(pk = 50)
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
SelectionProportions(stab)

# Consensus clustering
set.seed(1)
simul <- SimulateClustering(

n = c(30, 30, 30), nu_xc = 1, ev_xc = 0.5
)
stab <- Clustering(xdata = simul$data)
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ConsensusMatrix(stab)

SparseGroupPLS Sparse group Partial Least Squares

Description

Runs a sparse group Partial Least Squares model using implementation from sgPLS-package. This
function is not using stability.

Usage

SparseGroupPLS(
xdata,
ydata,
family = "gaussian",
group_x,
group_y = NULL,
Lambda,
alpha.x,
alpha.y = NULL,
keepX_previous = NULL,
keepY = NULL,
ncomp = 1,
scale = TRUE,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

family type of PLS model. If family="gaussian", a sparse group PLS model as de-
fined in sgPLS is run (for continuous outcomes). If family="binomial", a
PLS-DA model as defined in sgPLSda is run (for categorical outcomes).

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group.

group_y optional vector encoding the grouping structure among outcomes. This argu-
ment indicates the number of variables in each group.

Lambda matrix of parameters controlling the number of selected groups at current com-
ponent, as defined by ncomp.

alpha.x vector of parameters controlling the level of sparsity within groups of predictors.
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alpha.y optional vector of parameters controlling the level of sparsity within groups of
outcomes. Only used if family="gaussian".

keepX_previous number of selected groups in previous components. Only used if ncomp > 1.
The argument keepX in sgPLS is obtained by concatenating keepX_previous
and Lambda.

keepY number of selected groups of outcome variables. This argument is defined as in
sgPLS. Only used if family="gaussian".

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one). Only used if family="gaussian".

... additional arguments to be passed to sgPLS or sgPLSda.

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors (starting with "X") or outcomes (starting with
"Y") variables for different components (denoted by "PC").

References

Liquet B, de Micheaux PL, Hejblum BP, Thiébaut R (2016). “Group and sparse group partial least
square approaches applied in genomics context.” Bioinformatics, 32(1), 35-42. ISSN 1367-4803,
doi:10.1093/bioinformatics/btv535.

See Also

VariableSelection, BiSelection

Other penalised dimensionality reduction functions: GroupPLS(), SparsePCA(), SparsePLS()

Examples

if (requireNamespace("sgPLS", quietly = TRUE)) {
## Sparse group PLS
# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 30, q = 3, family = "gaussian")
x <- simul$xdata
y <- simul$ydata

# Running sgPLS with 1 group and sparsity of 0.5
mypls <- SparseGroupPLS(
xdata = x, ydata = y, Lambda = 1, family = "gaussian",
group_x = c(10, 15, 5), alpha.x = 0.5

)

https://doi.org/10.1093/bioinformatics/btv535
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# Running sgPLS with groups on outcomes
mypls <- SparseGroupPLS(

xdata = x, ydata = y, Lambda = 1, family = "gaussian",
group_x = c(10, 15, 5), alpha.x = 0.5,
group_y = c(2, 1), keepY = 1, alpha.y = 0.9

)

## Sparse group PLS-DA
# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "binomial")

# Running sgPLS-DA with 1 group and sparsity of 0.9
mypls <- SparseGroupPLS(

xdata = simul$xdata, ydata = simul$ydata, Lambda = 1, family = "binomial",
group_x = c(10, 15, 25), alpha.x = 0.9

)
}

SparsePCA Sparse Principal Component Analysis

Description

Runs a sparse Principal Component Analysis model using implementation from spca (if algo="sPCA")
or spca (if algo="rSVD"). This function is not using stability.

Usage

SparsePCA(
xdata,
Lambda,
ncomp = 1,
scale = TRUE,
keepX_previous = NULL,
algorithm = "sPCA",
...

)

Arguments

xdata data matrix with observations as rows and variables as columns.

Lambda matrix of parameters controlling the number of selected variables at current
component, as defined by ncomp.

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one).
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keepX_previous number of selected predictors in previous components. Only used if ncomp > 1.

algorithm character string indicating the name of the algorithm to use for sparse PCA.
Possible values are: "sPCA" (for the algorithm proposed by Zou, Hastie and
Tibshirani and implemented in spca) or "rSVD" (for the regularised SVD ap-
proach proposed by Shen and Huang and implemented in spca).

... additional arguments to be passed to spca (if algorithm="sPCA") or spca (if
algorithm="rSVD").

Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors (starting with "X") or outcomes (starting with
"Y") variables for different components (denoted by "PC").

References

Zou H, Hastie T, Tibshirani R (2006). “Sparse Principal Component Analysis.” Journal of Compu-
tational and Graphical Statistics, 15(2), 265-286. doi:10.1198/106186006X113430.

Shen H, Huang JZ (2008). “Sparse principal component analysis via regularized low rank matrix ap-
proximation.” Journal of Multivariate Analysis, 99(6), 1015-1034. ISSN 0047-259X, doi:10.1016/
j.jmva.2007.06.007.

See Also

VariableSelection, BiSelection

Other penalised dimensionality reduction functions: GroupPLS(), SparseGroupPLS(), SparsePLS()

Examples

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
x <- simul$xdata

# Sparse PCA (by Zou, Hastie, Tibshirani)
if (requireNamespace("elasticnet", quietly = TRUE)) {

mypca <- SparsePCA(
xdata = x, ncomp = 2,
Lambda = c(1, 2), keepX_previous = 10, algorithm = "sPCA"

)
}

# Sparse PCA (by Shen and Huang)
if (requireNamespace("mixOmics", quietly = TRUE)) {

mypca <- SparsePCA(
xdata = x, ncomp = 2,

https://doi.org/10.1198/106186006X113430
https://doi.org/10.1016/j.jmva.2007.06.007
https://doi.org/10.1016/j.jmva.2007.06.007
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Lambda = c(1, 2), keepX_previous = 10, algorithm = "rSVD"
)

}

SparsePLS Sparse Partial Least Squares

Description

Runs a sparse Partial Least Squares model using implementation from sgPLS-package. This func-
tion is not using stability.

Usage

SparsePLS(
xdata,
ydata,
Lambda,
family = "gaussian",
ncomp = 1,
scale = TRUE,
keepX_previous = NULL,
keepY = NULL,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.

ydata optional vector or matrix of outcome(s). If family is set to "binomial" or
"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the number of selected predictors at current
component, as defined by ncomp.

family type of PLS model. If family="gaussian", a sparse PLS model as defined
in sPLS is run (for continuous outcomes). If family="binomial", a PLS-DA
model as defined in sPLSda is run (for categorical outcomes).

ncomp number of components.

scale logical indicating if the data should be scaled (i.e. transformed so that all vari-
ables have a standard deviation of one). Only used if family="gaussian".

keepX_previous number of selected predictors in previous components. Only used if ncomp >
1. The argument keepX in sPLS is obtained by concatenating keepX_previous
and Lambda.

keepY number of selected outcome variables. This argument is defined as in sPLS.
Only used if family="gaussian".

... additional arguments to be passed to sPLS or sPLSda.
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Value

A list with:

selected matrix of binary selection status. Rows correspond to different model parame-
ters. Columns correspond to predictors.

beta_full array of model coefficients. Rows correspond to different model parameters.
Columns correspond to predictors (starting with "X") or outcomes (starting with
"Y") variables for different components (denoted by "PC").

References

KA LC, Rossouw D, Robert-Granié C, Besse P (2008). “A sparse PLS for variable selection when
integrating omics data.” Stat Appl Genet Mol Biol, 7(1), Article 35. ISSN 1544-6115, doi:10.2202/
15446115.1390.

See Also

VariableSelection, BiSelection

Other penalised dimensionality reduction functions: GroupPLS(), SparseGroupPLS(), SparsePCA()

Examples

if (requireNamespace("sgPLS", quietly = TRUE)) {
## Sparse PLS

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 20, q = 3, family = "gaussian")
x <- simul$xdata
y <- simul$ydata

# Running sPLS with 2 X-variables and 1 Y-variable
mypls <- SparsePLS(xdata = x, ydata = y, Lambda = 2, family = "gaussian", keepY = 1)

## Sparse PLS-DA

# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 20, family = "binomial")

# Running sPLS-DA with 2 X-variables and 1 Y-variable
mypls <- SparsePLS(xdata = simul$xdata, ydata = simul$ydata, Lambda = 2, family = "binomial")

}

https://doi.org/10.2202/1544-6115.1390
https://doi.org/10.2202/1544-6115.1390
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Split Splitting observations into non-overlapping sets

Description

Generates a list of length(tau) non-overlapping sets of observation IDs.

Usage

Split(data, family = NULL, tau = c(0.5, 0.25, 0.25))

Arguments

data vector or matrix of data. In regression, this should be the outcome data.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

tau vector of the proportion of observations in each of the sets.

Details

With categorical outcomes (i.e. family argument is set to "binomial", "multinomial" or "cox"),
the split is done such that the proportion of observations from each of the categories in each of the
sets is representative of that of the full sample.

Value

A list of length length(tau) with sets of non-overlapping observation IDs.

Examples

# Splitting into 3 sets
simul <- SimulateRegression()
ids <- Split(data = simul$ydata)
lapply(ids, length)

# Balanced splits with respect to a binary variable
simul <- SimulateRegression(family = "binomial")
ids <- Split(data = simul$ydata, family = "binomial")
lapply(ids, FUN = function(x) {

table(simul$ydata[x, ])
})



106 StabilityMetrics

Square Adjacency from bipartite

Description

Generates a symmetric adjacency matrix encoding a bipartite graph.

Usage

Square(x)

Arguments

x matrix encoding the edges between two types of nodes (rows and columns).

Value

A symmetric adjacency matrix encoding a bipartite graph.

Examples

# Simulated links between two sets
set.seed(1)
mat <- matrix(sample(c(0, 1), size = 15, replace = TRUE),

nrow = 5, ncol = 3
)

# Adjacency matrix of a bipartite graph
Square(mat)

StabilityMetrics Stability selection metrics

Description

Computes the stability score (see StabilityScore) and upper-bounds of the PFER and FDP from
selection proportions of models with a given parameter controlling the sparsity of the underlying
algorithm and for different thresholds in selection proportions.
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Usage

StabilityMetrics(
selprop,
pk = NULL,
pi_list = seq(0.6, 0.9, by = 0.01),
K = 100,
n_cat = NULL,
PFER_method = "MB",
PFER_thr_blocks = Inf,
FDP_thr_blocks = Inf,
Sequential_template = NULL,
graph = TRUE,
group = NULL

)

Arguments

selprop array of selection proportions.

pk optional vector encoding the grouping structure. Only used for multi-block sta-
bility selection where pk indicates the number of variables in each group. If
pk=NULL, single-block stability selection is performed.

pi_list vector of thresholds in selection proportions. If n_cat=NULL or n_cat=2, these
values must be >0 and <1. If n_cat=3, these values must be >0.5 and <1.

K number of resampling iterations.

n_cat computation options for the stability score. Default is NULL to use the score
based on a z test. Other possible values are 2 or 3 to use the score based on the
negative log-likelihood.

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr_blocks

vector of block-specific thresholds in PFER for constrained calibration by error
control. If PFER_thr=Inf and FDP_thr=Inf, unconstrained calibration is used.

FDP_thr_blocks vector of block-specific thresholds in the expected proportion of falsely selected
features (or False Discovery Proportion, FDP) for constrained calibration by
error control. If PFER_thr=Inf and FDP_thr=Inf, unconstrained calibration is
used.

Sequential_template

logical matrix encoding the type of procedure to use for data with multiple
blocks in stability selection graphical modelling. For multi-block estimation,
the stability selection model is constructed as the union of block-specific stable
edges estimated while the others are weakly penalised (TRUE only for the block
currently being calibrated and FALSE for other blocks). Other approaches with
joint calibration of the blocks are allowed (all entries are set to TRUE).
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graph logical indicating if stability selection is performed in a regression (if FALSE) or
graphical (if TRUE) framework.

group vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group and only needs to be provided for
group (but not sparse group) penalisation.

Value

A list with:

S a matrix of the best (block-specific) stability scores for different (sets of) penalty
parameters. In multi-block stability selection, rows correspond to different sets
of penalty parameters, (values are stored in the output "Lambda") and columns
correspond to different blocks.

Lambda a matrix of (block-specific) penalty parameters. In multi-block stability selec-
tion, rows correspond to sets of penalty parameters and columns correspond to
different blocks.

Q a matrix of average numbers of (block-specific) edges selected by the underly-
ing algorithm for different (sets of) penalty parameters. In multi-block stability
selection, rows correspond to different sets of penalty parameters, (values are
stored in the output "Lambda") and columns correspond to different blocks.

Q_s a matrix of calibrated numbers of (block-specific) stable edges for different (sets
of) penalty parameters. In multi-block stability selection, rows correspond to
different sets of penalty parameters, (values are stored in the output "Lambda")
and columns correspond to different blocks.

P a matrix of calibrated (block-specific) thresholds in selection proportions for
different (sets of) penalty parameters. In multi-block stability selection, rows
correspond to different sets of penalty parameters, (values are stored in the out-
put "Lambda") and columns correspond to different blocks.

PFER a matrix of computed (block-specific) upper-bounds in PFER of calibrated graphs
for different (sets of) penalty parameters. In multi-block stability selection, rows
correspond to different sets of penalty parameters, (values are stored in the out-
put "Lambda") and columns correspond to different blocks.

FDP a matrix of computed (block-specific) upper-bounds in FDP of calibrated sta-
bility selection models for different (sets of) penalty parameters. In multi-block
stability selection, rows correspond to different sets of penalty parameters, (val-
ues are stored in the output "Lambda") and columns correspond to different
blocks.

S_2d an array of (block-specific) stability scores obtained with different combinations
of parameters. Rows correspond to different (sets of) penalty parameters and
columns correspond to different thresholds in selection proportions. In multi-
block stability selection, indices along the third dimension correspond to differ-
ent blocks.

PFER_2d an array of computed upper-bounds of PFER obtained with different combi-
nations of parameters. Rows correspond to different penalty parameters and
columns correspond to different thresholds in selection proportions. Not avail-
able in multi-block stability selection graphical modelling.
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FDP_2d an array of computed upper-bounds of FDP obtained with different combina-
tions of parameters. Rows correspond to different penalty parameters and columns
correspond to different thresholds in selection proportions. Not available in
multi-block stability selection graphical modelling.

References

Bodinier B, Filippi S, Nøst TH, Chiquet J, Chadeau-Hyam M (2023). “Automated calibration for
stability selection in penalised regression and graphical models.” Journal of the Royal Statisti-
cal Society Series C: Applied Statistics, qlad058. ISSN 0035-9254, doi:10.1093/jrsssc/qlad058,
https://academic.oup.com/jrsssc/advance-article-pdf/doi/10.1093/jrsssc/qlad058/50878777/qlad058.pdf.

Meinshausen N, Bühlmann P (2010). “Stability selection.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 72(4), 417-473. doi:10.1111/j.14679868.2010.00740.x.

Shah RD, Samworth RJ (2013). “Variable selection with error control: another look at stability
selection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 55-
80. doi:10.1111/j.14679868.2011.01034.x.

See Also

Other stability metric functions: ConsensusScore(), FDP(), PFER(), StabilityScore()

Examples

## Sparse or sparse group penalisation

# Simulating set of selection proportions
set.seed(1)
selprop <- matrix(round(runif(n = 20), digits = 2), nrow = 2)

# Computing stability scores for different thresholds
metrics <- StabilityMetrics(

selprop = selprop, pi = c(0.6, 0.7, 0.8),
K = 100, graph = FALSE

)

## Group penalisation

# Simulating set of selection proportions
set.seed(1)
selprop <- matrix(round(runif(n = 6), digits = 2), nrow = 2)
selprop <- cbind(

selprop[, 1], selprop[, 1],
selprop[, 2], selprop[, 2],
matrix(rep(selprop[, 3], each = 6), nrow = 2, byrow = TRUE)

)

# Computing stability scores for different thresholds
metrics <- StabilityMetrics(

selprop = selprop, pi = c(0.6, 0.7, 0.8),
K = 100, graph = FALSE, group = c(2, 2, 6)

https://doi.org/10.1093/jrsssc/qlad058
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x
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)

StabilityScore Stability score

Description

Computes the stability score from selection proportions of models with a given parameter control-
ling the sparsity and for different thresholds in selection proportions. The score measures how
unlikely it is that the selection procedure is uniform (i.e. uninformative) for a given combination of
parameters.

Usage

StabilityScore(
selprop,
pi_list = seq(0.6, 0.9, by = 0.01),
K,
n_cat = 3,
group = NULL

)

Arguments

selprop array of selection proportions.

pi_list vector of thresholds in selection proportions. If n_cat=NULL or n_cat=2, these
values must be >0 and <1. If n_cat=3, these values must be >0.5 and <1.

K number of resampling iterations.

n_cat computation options for the stability score. Default is NULL to use the score
based on a z test. Other possible values are 2 or 3 to use the score based on the
negative log-likelihood.

group vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group and only needs to be provided for
group (but not sparse group) penalisation.

Details

The stability score is derived from the likelihood under the assumption of uniform (uninformative)
selection.

We classify the features into three categories: the stably selected ones (that have selection propor-
tions ≥ π), the stably excluded ones (selection proportion ≤ 1−π), and the unstable ones (selection
proportions between 1− π and π).

Under the hypothesis of equiprobability of selection (instability), the likelihood of observing stably
selected, stably excluded and unstable features can be expressed as:
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Lλ,π =
∏N

j=1[(1 − F (Kπ − 1))1Hλ(j)≥Kπ × (F (Kπ − 1) − F (K(1 − π))1(1−π)K<Hλ(j)<Kπ ×
F (K(1− π))1Hλ(j)≤K(1−π) ]

where Hλ(j) is the selection count of feature j and F (x) is the cumulative probability function of
the binomial distribution with parameters K and the average proportion of selected features over
resampling iterations.

The stability score is computed as the minus log-transformed likelihood under the assumption of
equiprobability of selection:

Sλ,π = −log(Lλ,π)

The stability score increases with stability.

Alternatively, the stability score can be computed by considering only two sets of features: stably
selected (selection proportions ≥ π) or not (selection proportions < π). This can be done using
n_cat=2.

Value

A vector of stability scores obtained with the different thresholds in selection proportions.

References

Bodinier B, Filippi S, Nøst TH, Chiquet J, Chadeau-Hyam M (2023). “Automated calibration for
stability selection in penalised regression and graphical models.” Journal of the Royal Statisti-
cal Society Series C: Applied Statistics, qlad058. ISSN 0035-9254, doi:10.1093/jrsssc/qlad058,
https://academic.oup.com/jrsssc/advance-article-pdf/doi/10.1093/jrsssc/qlad058/50878777/qlad058.pdf.

See Also

Other stability metric functions: ConsensusScore(), FDP(), PFER(), StabilityMetrics()

Examples

# Simulating set of selection proportions
set.seed(1)
selprop <- round(runif(n = 20), digits = 2)

# Computing stability scores for different thresholds
score <- StabilityScore(selprop, pi_list = c(0.6, 0.7, 0.8), K = 100)

Stable Stable results

Description

Extracts stable results for stability selection or consensus clustering.

https://doi.org/10.1093/jrsssc/qlad058
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Usage

Stable(stability, argmax_id = NULL, linkage = "complete")

SelectedVariables(stability, argmax_id = NULL)

Adjacency(stability, argmax_id = NULL)

Clusters(stability, linkage = "complete", argmax_id = NULL)

Arguments

stability output of VariableSelection, BiSelection, GraphicalModel or Clustering.

argmax_id optional indices of hyper-parameters. If argmax_id=NULL, the calibrated hyper-
parameters are used.

linkage character string indicating the type of linkage used in hierarchical clustering to
define the stable clusters. Possible values include "complete", "single" and
"average" (see argument "method" in hclust for a full list).

Value

A binary vector or matrix encoding the selection status (1 if selected, 0 otherwise) in stability
selection or stable cluster membership in consensus clustering.

See Also

VariableSelection, BiSelection, GraphicalModel, Clustering

Examples

# Variable selection
set.seed(1)
simul <- SimulateRegression(pk = 20)
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
SelectedVariables(stab)
Stable(stab)

# Graphical model
set.seed(1)
simul <- SimulateGraphical(pk = 10)
stab <- GraphicalModel(xdata = simul$data)
Adjacency(stab)
Stable(stab)

# Clustering
set.seed(1)
simul <- SimulateClustering(

n = c(30, 30, 30),
nu_xc = 1

)
stab <- Clustering(xdata = simul$data)
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Clusters(stab)
Stable(stab)

StructuralModel Stability selection in Structural Equation Modelling

Description

Performs stability selection for Structural Equation Models. The underlying arrow selection al-
gorithm (e.g. regularised Structural Equation Modelling) is run with different combinations of
parameters controlling the sparsity (e.g. penalty parameter) and thresholds in selection proportions.
These two hyper-parameters are jointly calibrated by maximisation of the stability score.

Usage

StructuralModel(
xdata,
adjacency,
residual_covariance = NULL,
Lambda = NULL,
pi_list = seq(0.01, 0.99, by = 0.01),
K = 100,
tau = 0.5,
seed = 1,
n_cat = NULL,
implementation = PenalisedLinearSystem,
resampling = "subsampling",
cpss = FALSE,
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
Lambda_cardinal = 100,
optimisation = c("grid_search", "nloptr"),
n_cores = 1,
output_data = FALSE,
verbose = TRUE,
...

)

Arguments

xdata matrix with observations as rows and variables as columns. Column names must
be defined and in line with the row and column names of adjacency.

adjacency binary adjacency matrix of the Directed Acyclic Graph (transpose of the asym-
metric matrix A in Reticular Action Model notation). The row and column
names of this matrix must be defined.
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residual_covariance

binary and symmetric matrix encoding the nonzero entries in the residual co-
variance matrix (symmetric matrix S in Reticular Action Model notation). By
default, this is the identity matrix (no residual covariance).

Lambda matrix of parameters controlling the level of sparsity in the underlying feature
selection algorithm specified in implementation.

pi_list vector of thresholds in selection proportions. If n_cat=NULL or n_cat=2, these
values must be >0 and <1. If n_cat=3, these values must be >0.5 and <1.

K number of resampling iterations.

tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.

seed value of the seed to initialise the random number generator and ensure repro-
ducibility of the results (see set.seed).

n_cat computation options for the stability score. Default is NULL to use the score
based on a z test. Other possible values are 2 or 3 to use the score based on the
negative log-likelihood.

implementation function to use for variable selection.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

cpss logical indicating if complementary pair stability selection should be done. For
this, the algorithm is applied on two non-overlapping subsets of half of the obser-
vations. A feature is considered as selected if it is selected for both subsamples.
With this method, the data is split K/2 times (K models are fitted). Only used if
PFER_method="MB".

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm. Only used if Lambda=NULL.

optimisation character string indicating the type of optimisation method. With optimisation="grid_search"
(the default), all values in Lambda are visited. Alternatively, optimisation al-
gorithms implemented in nloptr can be used with optimisation="nloptr".
By default, we use "algorithm"="NLOPT_GN_DIRECT_L", "xtol_abs"=0.1,
"ftol_abs"=0.1 and "maxeval"=Lambda_cardinal. These values can be changed
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by providing the argument opts (see nloptr). For stability selection using pe-
nalised regression, optimisation="grid_search" may be faster as it allows
for warm start.

n_cores number of cores to use for parallel computing (see argument workers in multisession).
Using n_cores>1 is only supported with optimisation="grid_search".

output_data logical indicating if the input datasets xdata and ydata should be included in
the output.

verbose logical indicating if a loading bar and messages should be printed.

... additional parameters passed to the functions provided in implementation or
resampling.

Details

In stability selection, a feature selection algorithm is fitted on K subsamples (or bootstrap samples)
of the data with different parameters controlling the sparsity (Lambda). For a given (set of) sparsity
parameter(s), the proportion out of the K models in which each feature is selected is calculated.
Features with selection proportions above a threshold pi are considered stably selected. The stability
selection model is controlled by the sparsity parameter(s) for the underlying algorithm, and the
threshold in selection proportion:

Vλ,π = {j : pλ(j) ≥ π}

In Structural Equation Modelling, "feature" refers to an arrow in the corresponding Directed Acyclic
Graph.

These parameters can be calibrated by maximisation of a stability score (see ConsensusScore if
n_cat=NULL or StabilityScore otherwise) calculated under the null hypothesis of equiprobability
of selection.

It is strongly recommended to examine the calibration plot carefully to check that the grids of pa-
rameters Lambda and pi_list do not restrict the calibration to a region that would not include the
global maximum (see CalibrationPlot). In particular, the grid Lambda may need to be extended
when the maximum stability is observed on the left or right edges of the calibration heatmap. In
some instances, multiple peaks of stability score can be observed. Simulation studies suggest that
the peak corresponding to the largest number of selected features tend to give better selection perfor-
mances. This is not necessarily the highest peak (which is automatically retained by the functions
in this package). The user can decide to manually choose another peak.

To control the expected number of False Positives (Per Family Error Rate) in the results, a threshold
PFER_thr can be specified. The optimisation problem is then constrained to sets of parameters that
generate models with an upper-bound in PFER below PFER_thr (see Meinshausen and Bühlmann
(2010) and Shah and Samworth (2013)).

Possible resampling procedures include defining (i) K subsamples of a proportion tau of the ob-
servations, (ii) K bootstrap samples with the full sample size (obtained with replacement), and (iii)
K/2 splits of the data in half for complementary pair stability selection (see arguments resampling
and cpss). In complementary pair stability selection, a feature is considered selected at a given
resampling iteration if it is selected in the two complementary subsamples.

To ensure reproducibility of the results, the starting number of the random number generator is set
to seed.
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For parallelisation, stability selection with different sets of parameters can be run on n_cores cores.
Using n_cores > 1 creates a multisession. Alternatively, the function can be run manually with
different seeds and all other parameters equal. The results can then be combined using Combine.

Value

An object of class variable_selection. A list with:

S a matrix of the best stability scores for different parameters controlling the level
of sparsity in the underlying algorithm.

Lambda a matrix of parameters controlling the level of sparsity in the underlying algo-
rithm.

Q a matrix of the average number of selected features by the underlying algorithm
with different parameters controlling the level of sparsity.

Q_s a matrix of the calibrated number of stably selected features with different pa-
rameters controlling the level of sparsity.

P a matrix of calibrated thresholds in selection proportions for different parameters
controlling the level of sparsity in the underlying algorithm.

PFER a matrix of upper-bounds in PFER of calibrated stability selection models with
different parameters controlling the level of sparsity.

FDP a matrix of upper-bounds in FDP of calibrated stability selection models with
different parameters controlling the level of sparsity.

S_2d a matrix of stability scores obtained with different combinations of parameters.
Columns correspond to different thresholds in selection proportions.

PFER_2d a matrix of upper-bounds in FDP obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.

FDP_2d a matrix of upper-bounds in PFER obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.

selprop a matrix of selection proportions. Columns correspond to predictors from xdata.

Beta an array of model coefficients. Columns correspond to predictors from xdata.
Indices along the third dimension correspond to different resampling iterations.
With multivariate outcomes, indices along the fourth dimension correspond to
outcome-specific coefficients.

method a list with type="variable_selection" and values used for arguments implementation,
family, resampling, cpss and PFER_method.

params a list with values used for arguments K, pi_list, tau, n_cat, pk, n (number of
observations), PFER_thr, FDP_thr and seed. The datasets xdata and ydata are
also included if output_data=TRUE.

For all matrices and arrays returned, the rows are ordered in the same way and correspond to pa-
rameter values stored in Lambda.
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See Also

SelectionAlgo, Resample, StabilityScore

Other stability functions: BiSelection(), Clustering(), GraphicalModel(), VariableSelection()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = rep(7, 4))

# Data simulation
set.seed(1)
pk <- c(3, 2, 3)
simul <- SimulateStructural(

n = 500,
pk = pk,
nu_between = 0.5,
v_between = 1,
v_sign = 1

)

# Stability selection (using glmnet)
dag <- LayeredDAG(layers = pk)
stab <- StructuralModel(

xdata = simul$data,
adjacency = dag

)
CalibrationPlot(stab)
LinearSystemMatrix(vect = Stable(stab), adjacency = dag)

# Stability selection (using OpenMx)
if (requireNamespace("OpenMx", quietly = TRUE)) {

stab <- StructuralModel(
xdata = simul$data,
implementation = PenalisedOpenMx,
Lambda = seq(50, 500, by = 50),

https://doi.org/10.1093/jrsssc/qlad058
https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://doi.org/10.1080/10705511.2016.1154793
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adjacency = dag
)
CalibrationPlot(stab)
OpenMxMatrix(SelectedVariables(stab), adjacency = dag)

}

## Not run:
# Data simulation with latent variables
set.seed(1)
pk <- c(3, 2, 3)
simul <- SimulateStructural(

n = 500,
pk = pk,
nu_between = 0.5,
v_sign = 1,
v_between = 1,
n_manifest = 3,
ev_manifest = 0.95

)

# Stability selection (using OpenMx)
if (requireNamespace("OpenMx", quietly = TRUE)) {

dag <- LayeredDAG(layers = pk, n_manifest = 3)
penalised <- dag
penalised[, seq_len(ncol(simul$data))] <- 0
stab <- StructuralModel(

xdata = simul$data,
implementation = PenalisedOpenMx,
adjacency = dag,
penalised = penalised,
Lambda = seq(10, 100, by = 20),
K = 10 # to increase for real use

)
CalibrationPlot(stab)
ids_latent <- grep("f", colnames(dag))
OpenMxMatrix(SelectedVariables(stab),

adjacency = dag
)[ids_latent, ids_latent]

}

## End(Not run)

par(oldpar)

VariableSelection Stability selection in regression

Description

Performs stability selection for regression models. The underlying variable selection algorithm (e.g.
LASSO regression) is run with different combinations of parameters controlling the sparsity (e.g.
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penalty parameter) and thresholds in selection proportions. These two hyper-parameters are jointly
calibrated by maximisation of the stability score.

Usage

VariableSelection(
xdata,
ydata = NULL,
Lambda = NULL,
pi_list = seq(0.01, 0.99, by = 0.01),
K = 100,
tau = 0.5,
seed = 1,
n_cat = NULL,
family = "gaussian",
implementation = PenalisedRegression,
resampling = "subsampling",
cpss = FALSE,
PFER_method = "MB",
PFER_thr = Inf,
FDP_thr = Inf,
Lambda_cardinal = 100,
group_x = NULL,
group_penalisation = FALSE,
optimisation = c("grid_search", "nloptr"),
n_cores = 1,
output_data = FALSE,
verbose = TRUE,
beep = NULL,
...

)

Arguments

xdata matrix of predictors with observations as rows and variables as columns.
ydata optional vector or matrix of outcome(s). If family is set to "binomial" or

"multinomial", ydata can be a vector with character/numeric values or a fac-
tor.

Lambda matrix of parameters controlling the level of sparsity in the underlying fea-
ture selection algorithm specified in implementation. If Lambda=NULL and
implementation=PenalisedRegression, LambdaGridRegression is used to
define a relevant grid.

pi_list vector of thresholds in selection proportions. If n_cat=NULL or n_cat=2, these
values must be >0 and <1. If n_cat=3, these values must be >0.5 and <1.

K number of resampling iterations.
tau subsample size. Only used if resampling="subsampling" and cpss=FALSE.
seed value of the seed to initialise the random number generator and ensure repro-

ducibility of the results (see set.seed).
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n_cat computation options for the stability score. Default is NULL to use the score
based on a z test. Other possible values are 2 or 3 to use the score based on the
negative log-likelihood.

family type of regression model. This argument is defined as in glmnet. Possible val-
ues include "gaussian" (linear regression), "binomial" (logistic regression),
"multinomial" (multinomial regression), and "cox" (survival analysis).

implementation function to use for variable selection. Possible functions are: PenalisedRegression,
SparsePLS, GroupPLS and SparseGroupPLS. Alternatively, a user-defined func-
tion can be provided.

resampling resampling approach. Possible values are: "subsampling" for sampling with-
out replacement of a proportion tau of the observations, or "bootstrap" for
sampling with replacement generating a resampled dataset with as many obser-
vations as in the full sample. Alternatively, this argument can be a function to
use for resampling. This function must use arguments named data and tau and
return the IDs of observations to be included in the resampled dataset.

cpss logical indicating if complementary pair stability selection should be done. For
this, the algorithm is applied on two non-overlapping subsets of half of the obser-
vations. A feature is considered as selected if it is selected for both subsamples.
With this method, the data is split K/2 times (K models are fitted). Only used if
PFER_method="MB".

PFER_method method used to compute the upper-bound of the expected number of False Posi-
tives (or Per Family Error Rate, PFER). If PFER_method="MB", the method pro-
posed by Meinshausen and Bühlmann (2010) is used. If PFER_method="SS",
the method proposed by Shah and Samworth (2013) under the assumption of
unimodality is used.

PFER_thr threshold in PFER for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

FDP_thr threshold in the expected proportion of falsely selected features (or False Dis-
covery Proportion) for constrained calibration by error control. If PFER_thr=Inf
and FDP_thr=Inf, unconstrained calibration is used (the default).

Lambda_cardinal

number of values in the grid of parameters controlling the level of sparsity in the
underlying algorithm. Only used if Lambda=NULL.

group_x vector encoding the grouping structure among predictors. This argument indi-
cates the number of variables in each group. Only used for models with group
penalisation (e.g. implementation=GroupPLS or implementation=SparseGroupPLS).

group_penalisation

logical indicating if a group penalisation should be considered in the stability
score. The use of group_penalisation=TRUE strictly applies to group (not
sparse-group) penalisation.

optimisation character string indicating the type of optimisation method. With optimisation="grid_search"
(the default), all values in Lambda are visited. Alternatively, optimisation al-
gorithms implemented in nloptr can be used with optimisation="nloptr".
By default, we use "algorithm"="NLOPT_GN_DIRECT_L", "xtol_abs"=0.1,
"ftol_abs"=0.1 and "maxeval"=Lambda_cardinal. These values can be changed
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by providing the argument opts (see nloptr). For stability selection using pe-
nalised regression, optimisation="grid_search" may be faster as it allows
for warm start.

n_cores number of cores to use for parallel computing (see argument workers in multisession).
Using n_cores>1 is only supported with optimisation="grid_search".

output_data logical indicating if the input datasets xdata and ydata should be included in
the output.

verbose logical indicating if a loading bar and messages should be printed.

beep sound indicating the end of the run. Possible values are: NULL (no sound) or an
integer between 1 and 11 (see argument sound in beep).

... additional parameters passed to the functions provided in implementation or
resampling.

Details

In stability selection, a feature selection algorithm is fitted on K subsamples (or bootstrap samples)
of the data with different parameters controlling the sparsity (Lambda). For a given (set of) sparsity
parameter(s), the proportion out of the K models in which each feature is selected is calculated.
Features with selection proportions above a threshold pi are considered stably selected. The stability
selection model is controlled by the sparsity parameter(s) for the underlying algorithm, and the
threshold in selection proportion:

Vλ,π = {j : pλ(j) ≥ π}
If argument group_penalisation=FALSE, "feature" refers to variable (variable selection model).
If argument group_penalisation=TRUE, "feature" refers to group (group selection model). In this
case, groups need to be defined a priori and specified in argument group_x.

These parameters can be calibrated by maximisation of a stability score (see ConsensusScore if
n_cat=NULL or StabilityScore otherwise) calculated under the null hypothesis of equiprobability
of selection.

It is strongly recommended to examine the calibration plot carefully to check that the grids of pa-
rameters Lambda and pi_list do not restrict the calibration to a region that would not include the
global maximum (see CalibrationPlot). In particular, the grid Lambda may need to be extended
when the maximum stability is observed on the left or right edges of the calibration heatmap. In
some instances, multiple peaks of stability score can be observed. Simulation studies suggest that
the peak corresponding to the largest number of selected features tend to give better selection perfor-
mances. This is not necessarily the highest peak (which is automatically retained by the functions
in this package). The user can decide to manually choose another peak.

To control the expected number of False Positives (Per Family Error Rate) in the results, a threshold
PFER_thr can be specified. The optimisation problem is then constrained to sets of parameters that
generate models with an upper-bound in PFER below PFER_thr (see Meinshausen and Bühlmann
(2010) and Shah and Samworth (2013)).

Possible resampling procedures include defining (i) K subsamples of a proportion tau of the ob-
servations, (ii) K bootstrap samples with the full sample size (obtained with replacement), and (iii)
K/2 splits of the data in half for complementary pair stability selection (see arguments resampling
and cpss). In complementary pair stability selection, a feature is considered selected at a given
resampling iteration if it is selected in the two complementary subsamples.
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For categorical or time to event outcomes (argument family is "binomial", "multinomial" or
"cox"), the proportions of observations from each category in all subsamples or bootstrap samples
are the same as in the full sample.

To ensure reproducibility of the results, the starting number of the random number generator is set
to seed.

For parallelisation, stability selection with different sets of parameters can be run on n_cores cores.
Using n_cores > 1 creates a multisession. Alternatively, the function can be run manually with
different seeds and all other parameters equal. The results can then be combined using Combine.

Value

An object of class variable_selection. A list with:

S a matrix of the best stability scores for different parameters controlling the level
of sparsity in the underlying algorithm.

Lambda a matrix of parameters controlling the level of sparsity in the underlying algo-
rithm.

Q a matrix of the average number of selected features by the underlying algorithm
with different parameters controlling the level of sparsity.

Q_s a matrix of the calibrated number of stably selected features with different pa-
rameters controlling the level of sparsity.

P a matrix of calibrated thresholds in selection proportions for different parameters
controlling the level of sparsity in the underlying algorithm.

PFER a matrix of upper-bounds in PFER of calibrated stability selection models with
different parameters controlling the level of sparsity.

FDP a matrix of upper-bounds in FDP of calibrated stability selection models with
different parameters controlling the level of sparsity.

S_2d a matrix of stability scores obtained with different combinations of parameters.
Columns correspond to different thresholds in selection proportions.

PFER_2d a matrix of upper-bounds in FDP obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.

FDP_2d a matrix of upper-bounds in PFER obtained with different combinations of pa-
rameters. Columns correspond to different thresholds in selection proportions.

selprop a matrix of selection proportions. Columns correspond to predictors from xdata.

Beta an array of model coefficients. Columns correspond to predictors from xdata.
Indices along the third dimension correspond to different resampling iterations.
With multivariate outcomes, indices along the fourth dimension correspond to
outcome-specific coefficients.

method a list with type="variable_selection" and values used for arguments implementation,
family, resampling, cpss and PFER_method.

params a list with values used for arguments K, pi_list, tau, n_cat, pk, n (number of
observations), PFER_thr, FDP_thr and seed. The datasets xdata and ydata are
also included if output_data=TRUE.

For all matrices and arrays returned, the rows are ordered in the same way and correspond to pa-
rameter values stored in Lambda.
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See Also

PenalisedRegression, SelectionAlgo, LambdaGridRegression, Resample, StabilityScore
Refit, ExplanatoryPerformance, Incremental,

Other stability functions: BiSelection(), Clustering(), GraphicalModel(), StructuralModel()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = rep(7, 4))

# Linear regression
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian"

)

# Calibration plot
CalibrationPlot(stab)

# Extracting the results
summary(stab)
Stable(stab)
SelectionProportions(stab)
plot(stab)

# Using randomised LASSO
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", penalisation = "randomised"

)
plot(stab)

https://doi.org/10.1093/jrsssc/qlad058
https://doi.org/10.1111/j.1467-9868.2011.01034.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x
http://www.jstor.org/stable/2346178
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# Using adaptive LASSO
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", penalisation = "adaptive"

)
plot(stab)

# Using additional arguments from glmnet (e.g. penalty.factor)
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata, family = "gaussian",
penalty.factor = c(rep(1, 45), rep(0, 5))

)
head(coef(stab))

# Using CART
if (requireNamespace("rpart", quietly = TRUE)) {

stab <- VariableSelection(
xdata = simul$xdata, ydata = simul$ydata,
implementation = CART,
family = "gaussian",

)
plot(stab)

}

# Regression with multivariate outcomes
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 20, q = 3, family = "gaussian")
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "mgaussian"

)
summary(stab)

# Logistic regression
set.seed(1)
simul <- SimulateRegression(n = 200, pk = 10, family = "binomial", ev_xy = 0.8)
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "binomial"

)
summary(stab)

# Sparse PCA (1 component, see BiSelection for more components)
if (requireNamespace("elasticnet", quietly = TRUE)) {

set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4))
stab <- VariableSelection(

xdata = simul$data,
Lambda = seq_len(ncol(simul$data) - 1),
implementation = SparsePCA

)
CalibrationPlot(stab, xlab = "")
summary(stab)
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}

# Sparse PLS (1 outcome, 1 component, see BiSelection for more options)
if (requireNamespace("sgPLS", quietly = TRUE)) {

set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
stab <- VariableSelection(
xdata = simul$xdata, ydata = simul$ydata,
Lambda = seq_len(ncol(simul$xdata) - 1),
implementation = SparsePLS, family = "gaussian"

)
CalibrationPlot(stab, xlab = "")
SelectedVariables(stab)

}

# Group PLS (1 outcome, 1 component, see BiSelection for more options)
if (requireNamespace("sgPLS", quietly = TRUE)) {

stab <- VariableSelection(
xdata = simul$xdata, ydata = simul$ydata,
Lambda = seq_len(5),
group_x = c(5, 5, 10, 20, 10),
group_penalisation = TRUE,
implementation = GroupPLS, family = "gaussian"

)
CalibrationPlot(stab, xlab = "")
SelectedVariables(stab)

}

# Example with more hyper-parameters: elastic net
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50, family = "gaussian")
TuneElasticNet <- function(xdata, ydata, family, alpha) {

stab <- VariableSelection(
xdata = xdata, ydata = ydata,
family = family, alpha = alpha, verbose = FALSE

)
return(max(stab$S, na.rm = TRUE))

}
myopt <- optimise(TuneElasticNet,

lower = 0.1, upper = 1, maximum = TRUE,
xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian"

)
stab <- VariableSelection(

xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", alpha = myopt$maximum

)
summary(stab)
enet <- SelectedVariables(stab)

# Comparison with LASSO
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata, family = "gaussian")
summary(stab)
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lasso <- SelectedVariables(stab)
table(lasso, enet)

# Example using an external function: group-LASSO with gglasso
if (requireNamespace("gglasso", quietly = TRUE)) {

set.seed(1)
simul <- SimulateRegression(n = 200, pk = 20, family = "binomial")
ManualGridGroupLasso <- function(xdata, ydata, family, group_x, ...) {
# Defining the grouping
group <- do.call(c, lapply(seq_len(length(group_x)), FUN = function(i) {

rep(i, group_x[i])
}))

if (family == "binomial") {
ytmp <- ydata
ytmp[ytmp == min(ytmp)] <- -1
ytmp[ytmp == max(ytmp)] <- 1
return(gglasso::gglasso(xdata, ytmp, loss = "logit", group = group, ...))

} else {
return(gglasso::gglasso(xdata, ydata, lambda = lambda, loss = "ls", group = group, ...))
}

}
Lambda <- LambdaGridRegression(

xdata = simul$xdata, ydata = simul$ydata,
family = "binomial", Lambda_cardinal = 20,
implementation = ManualGridGroupLasso,
group_x = rep(5, 4)

)
GroupLasso <- function(xdata, ydata, Lambda, family, group_x, ...) {

# Defining the grouping
group <- do.call(c, lapply(seq_len(length(group_x)), FUN = function(i) {

rep(i, group_x[i])
}))

# Running the regression
if (family == "binomial") {

ytmp <- ydata
ytmp[ytmp == min(ytmp)] <- -1
ytmp[ytmp == max(ytmp)] <- 1

mymodel <- gglasso::gglasso(xdata, ytmp, lambda = Lambda, loss = "logit", group = group, ...)
}
if (family == "gaussian") {
mymodel <- gglasso::gglasso(xdata, ydata, lambda = Lambda, loss = "ls", group = group, ...)
}
# Extracting and formatting the beta coefficients
beta_full <- t(as.matrix(mymodel$beta))
beta_full <- beta_full[, colnames(xdata)]

selected <- ifelse(beta_full != 0, yes = 1, no = 0)

return(list(selected = selected, beta_full = beta_full))
}
stab <- VariableSelection(
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xdata = simul$xdata, ydata = simul$ydata,
implementation = GroupLasso, family = "binomial", Lambda = Lambda,
group_x = rep(5, 4),
group_penalisation = TRUE

)
summary(stab)

}

par(oldpar)

WeightBoxplot Stable attribute weights

Description

Creates a boxplots of the distribution of (calibrated) median attribute weights obtained from the
COSA algorithm across the subsampling iterations. See examples in Clustering.

Usage

WeightBoxplot(
stability,
at = NULL,
argmax_id = NULL,
col = NULL,
boxwex = 0.3,
xlab = "",
ylab = "Weight",
cex.lab = 1.5,
las = 3,
frame = "F",
add = FALSE,
...

)

Arguments

stability output of Clustering.

at coordinates along the x-axis (more details in boxplot).

argmax_id optional indices of hyper-parameters. If argmax_id=NULL, the calibrated hyper-
parameters are used.

col optional vector of colours.

boxwex box width (more details in boxplot).

xlab label of the x-axis.
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ylab label of the y-axis.

cex.lab font size for labels.

las orientation of labels on the x-axis (see par).

frame logical indicating if the box around the plot should be drawn (more details in
boxplot).

add logical indicating if the boxplot should be added to the current plot.

... additional parameters passed to boxplot).

Value

A boxplot.

See Also

Clustering
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ConsensusScore, 11, 22, 23, 29, 39, 49, 77,
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coxph, 35, 58, 89
cv.glmnet, 89
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glassoFast, 46, 48, 62, 63, 72
glm, 35, 58, 89
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GraphComparison, 43
GraphicalAlgo, 45, 51, 94
GraphicalModel, 8, 13, 15–18, 23, 27, 41, 42,

44, 46, 46, 72, 95, 97, 98, 112, 117,
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Mclust, 40
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mxModel, 68
mxPenaltySearch, 67
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OpenMx, 73, 74
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PenalisedLinearSystem, 67, 73, 74
PenalisedLinearSystem
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plot.clustering, 78
plot.incremental, 79
plot.roc_band, 80
plot.variable_selection, 81
PlotIncremental (plot.incremental), 79
PLS, 82, 87–89
pls, 82, 83
points, 17
predict, 33, 85
predict.pls, 87
predict.variable_selection, 34, 85
PredictPLS, 87

RCy3, 42
Recalibrate (Refit), 88
Refit, 6, 36, 59, 85, 86, 88, 123
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Resample, 13, 23, 51, 91, 117, 123
ROC, 80, 81
rpart, 18, 19

SelectedVariables (Stable), 111
SelectionAlgo, 19, 46, 74, 76, 93, 117, 123
SelectionPerformance, 26, 95, 97
SelectionPerformanceGraph, 26, 44, 96, 96
SelectionProportions, 98
set.seed, 10, 21, 48, 65, 89, 114, 119
sgPLS, 54, 99, 100
sgPLSda, 99, 100
sharp-package, 3
SimulateClustering, 26
SimulateComponents, 95
SimulateGraphical, 44, 95, 97
SimulateRegression, 44, 95, 97
SparseGroupPLS, 13, 54, 94, 99, 102, 104
SparsePCA, 13, 54, 94, 100, 101, 104
SparsePLS, 13, 54, 94, 100, 102, 103
spca, 101, 102
Split, 105
sPLS, 103
sPLSda, 103
Square, 106
StabilityMetrics, 30, 39, 77, 106, 111
StabilityScore, 11, 13, 30, 39, 49, 51, 77,

106, 109, 110, 115, 117, 121, 123
Stable, 111
StructuralModel, 13, 23, 51, 113, 123

text, 18

VariableSelection, 6, 8, 13, 16–19, 23, 25,
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visNetwork, 42, 50

WeightBoxplot, 127
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