
Package: fake (via r-universe)
September 4, 2024

Title Flexible Data Simulation Using the Multivariate Normal
Distribution

Version 1.4.0

Date 2023-04-13

Author Barbara Bodinier [aut, cre]

Maintainer Barbara Bodinier <barbara.bodinier@gmail.com>

Description This R package can be used to generate artificial data
conditionally on pre-specified (simulated or user-defined)
relationships between the variables and/or observations. Each
observation is drawn from a multivariate Normal distribution
where the mean vector and covariance matrix reflect the desired
relationships. Outputs can be used to evaluate the performances
of variable selection, graphical modelling, or clustering
approaches by comparing the true and estimated structures (B
Bodinier et al (2021) <arXiv:2106.02521>).

License GPL (>= 3)

Language en-GB

Encoding UTF-8

RoxygenNote 7.2.3

Imports huge, igraph, MASS, Rdpack, withr (>= 2.4.0)

Suggests testthat (>= 3.0.0),

Config/testthat/edition 3

RdMacros Rdpack

Repository https://barbarabodinier.r-universe.dev

RemoteUrl https://github.com/barbarabodinier/fake

RemoteRef HEAD

RemoteSha 37f655cd02eabe0e2535c2f8315f4fc66725bc82

1

https://arxiv.org/abs/2106.02521

2 BlockDiagonal

Contents
BlockDiagonal . 2
BlockMatrix . 3
BlockStructure . 4
Concordance . 4
Contrast . 5
ExpectedCommunities . 6
ExpectedConcordance . 8
Heatmap . 9
LayeredDAG . 11
MakePositiveDefinite . 12
MatchingArguments . 15
MinWithinProba . 15
plot.roc_curve . 17
ROC . 18
SimulateAdjacency . 19
SimulateClustering . 21
SimulateComponents . 24
SimulateCorrelation . 27
SimulateGraphical . 31
SimulatePrecision . 35
SimulateRegression . 38
SimulateStructural . 41

Index 45

BlockDiagonal Block diagonal matrix

Description

Generates a binary block diagonal matrix.

Usage

BlockDiagonal(pk)

Arguments

pk vector encoding the grouping structure.

Value

A binary block diagonal matrix.

See Also

Other block matrix functions: BlockMatrix(), BlockStructure()

BlockMatrix 3

Examples

Example 1
BlockDiagonal(pk = c(2, 3))

Example 2
BlockDiagonal(pk = c(2, 3, 2))

BlockMatrix Block matrix

Description

Generates a symmetric block matrix of size (sum(pk) x sum(pk)). The sizes of the submatrices is
defined based on pk. For each submatrix, all entries are equal to the submatrix (block) index.

Usage

BlockMatrix(pk)

Arguments

pk vector encoding the grouping structure.

Value

A symmetric block matrix.

See Also

Other block matrix functions: BlockDiagonal(), BlockStructure()

Examples

Example 1
BlockMatrix(pk = c(2, 3))

Example 2
BlockMatrix(pk = c(2, 3, 2))

4 Concordance

BlockStructure Block structure

Description

Generates a symmetric matrix of size (length(pk) x length(pk)) where entries correspond to
block indices. This function can be used to visualise block indices of a matrix generated with
BlockMatrix.

Usage

BlockStructure(pk)

Arguments

pk vector encoding the grouping structure.

Value

A symmetric matrix of size length(pk)).

See Also

Other block matrix functions: BlockDiagonal(), BlockMatrix()

Examples

Example 1
BlockMatrix(pk = c(2, 3))
BlockStructure(pk = c(2, 3))

Example 2
BlockMatrix(pk = c(2, 3, 2))
BlockStructure(pk = c(2, 3, 2))

Concordance Concordance statistic

Description

Computes the concordance statistic given observed binary outcomes and predicted probabilities of
event. In logistic regression, the concordance statistic is equal to the area under the Receiver Oper-
ating Characteristic (ROC) curve and estimates the probability that an individual who experienced
the event (Yi = 1) had a higher probability of event than an individual who did not experience the
event (Yi = 0).

Contrast 5

Usage

Concordance(observed, predicted)

Arguments

observed vector of binary outcomes.

predicted vector of predicted probabilities.

Value

The concordance statistic.

See Also

Other goodness of fit functions: ROC()

Examples

Data simulation
set.seed(1)
proba <- runif(n = 200)
ydata <- rbinom(n = length(proba), size = 1, prob = proba)

Observed concordance in simulated data
Concordance(observed = ydata, predicted = proba)

Contrast Matrix contrast

Description

Computes matrix contrast, defined as the number of unique truncated entries with a specified num-
ber of digits.

Usage

Contrast(mat, digits = 3)

Arguments

mat input matrix.

digits number of digits to use.

Value

A single number, the contrast of the input matrix.

6 ExpectedCommunities

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Examples

Example 1
mat <- matrix(c(0.1, 0.2, 0.2, 0.2), ncol = 2, byrow = TRUE)
Contrast(mat)

Example 2
mat <- matrix(c(0.1, 0.2, 0.2, 0.3), ncol = 2, byrow = TRUE)
Contrast(mat)

ExpectedCommunities Expected community structure

Description

Computes expected metrics related to the community structure of a graph simulated with given
parameters.

Usage

ExpectedCommunities(pk, nu_within = 0.1, nu_between = 0, nu_mat = NULL)

Arguments

pk vector of the number of variables per group in the simulated dataset. The number
of nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if theta is
not provided.

nu_within probability of having an edge between two nodes belonging to the same group,
as defined in pk. If length(pk)=1, this is the expected density of the graph. If
implementation=HugeAdjacency, this argument is only used for topology="random"
or topology="cluster" (see argument prob in huge.generator). Only used
if nu_mat is not provided.

nu_between probability of having an edge between two nodes belonging to different groups,
as defined in pk. By default, the same density is used for within and between
blocks (nu_within=nu_between). Only used if length(pk)>1. Only used if
nu_mat is not provided.

nu_mat matrix of probabilities of having an edge between nodes belonging to a given
pair of node groups defined in pk.

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

ExpectedCommunities 7

Details

Given a group of nodes, the within degree dwi of node i is defined as the number of nodes from
the same group node i is connected to. The between degree dbi is the number of nodes from other
groups node i is connected to. A weak community in the network is defined as a group of nodes for
which the total within degree (sum of the dwi for all nodes in the community) is stricly greater than
the total between degree (sum of dbi for all nodes in the community). For more details, see Network
Science by Albert-Laszlo Barabasi.

The expected total within and between degrees for the groups defined in pk in a network simulated
using SimulateAdjacency can be computed given the group sizes (stored in pk) and probabilities
of having an edge between nodes from a given group pair (defined by nu_within and nu_between
or by nu_mat). The expected presence of weak communities can be inferred from these quantities.

The expected modularity, measuring the difference between observed and expected number of
within-community edges, is also returned. For more details on this metric, see modularity.

Value

A list with:

total_within_degree_c

total within degree by node group, i.e. sum of expected within degree over all
nodes in a given group.

total_between_degree

total between degree by node group, i.e. sum of expected between degree over
all nodes in a given group.

weak_community binary indicator for a given node group to be an expected weak community.
total_number_edges_c

matrix of expected number of edges between nodes from a given node pair.

modularity expected modularity (see modularity).

See Also

SimulateGraphical, SimulateAdjacency, MinWithinProba

Examples

Simulation parameters
pk <- rep(20, 4)
nu_within <- 0.8
nu_between <- 0.1

Expected metrics
expected <- ExpectedCommunities(

pk = pk,
nu_within = nu_within,
nu_between = nu_between

)

Example of simulated graph
set.seed(1)

http://networksciencebook.com/chapter/9#basics
http://networksciencebook.com/chapter/9#basics

8 ExpectedConcordance

theta <- SimulateAdjacency(
pk = pk,
nu_within = nu_within,
nu_between = nu_between

)

Comparing observed and expected numbers of edges
bigblocks <- BlockMatrix(pk)
BlockStructure(pk)
sum(theta[which(bigblocks == 2)]) / 2
expected$total_number_edges_c[1, 2]

Comparing observed and expected modularity
igraph::modularity(igraph::graph_from_adjacency_matrix(theta, mode = "undirected"),

membership = rep.int(1:length(pk), times = pk)
)
expected$modularity

ExpectedConcordance Expected concordance statistic

Description

Computes the expected concordance statistic given true probabilities of event. In logistic regression,
the concordance statistic is equal to the area under the Receiver Operating Characteristic (ROC)
curve and estimates the probability that an individual who experienced the event (Yi = 1) had a
higher probability of event than an individual who did not experience the event (Yi = 0).

Usage

ExpectedConcordance(probabilities)

Arguments

probabilities vector of probabilities of event.

Value

The expected concordance statistic.

See Also

Concordance

Heatmap 9

Examples

Simulation of probabilities
set.seed(1)
proba <- runif(n = 1000)

Expected concordance
ExpectedConcordance(proba)

Simulation of binary outcome
ydata <- rbinom(n = length(proba), size = 1, prob = proba)

Observed concordance in simulated data
Concordance(observed = ydata, predicted = proba)

Heatmap Heatmap visualisation

Description

Produces a heatmap for visualisation of matrix entries.

Usage

Heatmap(
mat,
col = c("ivory", "navajowhite", "tomato", "darkred"),
resolution = 10000,
bty = "o",
axes = TRUE,
cex.axis = 1,
xlas = 2,
ylas = 2,
text = FALSE,
cex = 1,
legend = TRUE,
legend_length = NULL,
legend_range = NULL,
cex.legend = 1,
...

)

Arguments

mat data matrix.

col vector of colours.

resolution number of different colours to use.

10 Heatmap

bty character string indicating if the box around the plot should be drawn. Possible
values include: "o" (default, the box is drawn), or "n" (no box).

axes logical indicating if the row and column names of mat should be displayed.

cex.axis font size for axes.

xlas orientation of labels on the x-axis, as las in par.

ylas orientation of labels on the y-axis, as las in par.

text logical indicating if numbers should be displayed.

cex font size for numbers. Only used if text=TRUE.

legend logical indicating if the colour bar should be included.

legend_length length of the colour bar.

legend_range range of the colour bar.

cex.legend font size for legend.

... additional arguments passed to formatC for number formatting. Only used if
text=TRUE.

Value

A heatmap.

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = c(3, 3, 1, 5))

Data simulation
set.seed(1)
mat <- matrix(rnorm(100), ncol = 10)
rownames(mat) <- paste0("r", 1:nrow(mat))
colnames(mat) <- paste0("c", 1:ncol(mat))

Generating heatmaps
Heatmap(mat = mat)
Heatmap(mat = mat, text = TRUE, format = "f", digits = 2)
Heatmap(

mat = mat,
col = c("lightgrey", "blue", "black"),
legend = FALSE

)

par(oldpar)

LayeredDAG 11

LayeredDAG Layered Directed Acyclic Graph

Description

Returns the adjacency matrix of a layered Directed Acyclic Graph. In this graph, arrows go from all
members of a layer to all members of the following layers. There are no arrows between members
of the same layer.

Usage

LayeredDAG(layers, n_manifest = NULL)

Arguments

layers list of vectors. Each vector in the list corresponds to a layer. There are as many
layers as items in the list. Alternatively, this argument can be a vector of the
number of variables per layer.

n_manifest vector of the number of manifest (observed) variables measuring each of the
latent variables. If n_manifest is provided, the variables defined in argument
layers are considered latent. All entries of n_manifest must be strictly posi-
tive.

Value

The adjacency matrix of the layered Directed Acyclic Graph.

Examples

Example with 3 layers specified in a list
layers <- list(

c("x1", "x2", "x3"),
c("x4", "x5"),
c("x6", "x7", "x8")

)
dag <- LayeredDAG(layers)
plot(dag)

Example with 3 layers specified in a vector
dag <- LayeredDAG(layers = c(3, 2, 3))
plot(dag)

12 MakePositiveDefinite

MakePositiveDefinite Making positive definite matrix

Description

Determines the diagonal entries of a symmetric matrix to make it is positive definite.

Usage

MakePositiveDefinite(
omega,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25

)

Arguments

omega input matrix.

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

Details

Two strategies are implemented to ensure positive definiteness: by diagonally dominance or using
eigendecomposition.

A diagonally dominant symmetric matrix with positive diagonal entries is positive definite. With
pd_strategy="diagonally_dominant", the diagonal entries of the matrix are defined to be strictly

MakePositiveDefinite 13

higher than the sum of entries on the corresponding row in absolute value, which ensures diagonally
dominance. Let Ω∗ denote the input matrix with zeros on the diagonal and Ω be the output positive
definite matrix. We have:

Ωii =
∑p

j=1 |Ωij ∗ |+ u, where u > 0 is a parameter.

A matrix is positive definite if all its eigenvalues are positive. With pd_strategy="diagonally_dominant",
diagonal entries of the matrix are defined to be higher than the absolute value of the smallest eigen-
value of the same matrix with a diagonal of zeros. Let λ1 denote the smallest eigenvvalue of the
input matrix Ω∗ with a diagonal of zeros, and v1 be the corresponding eigenvector. Diagonal entries
in the output matrix Ω are defined as:

Ωii = |λ1|+ u, where u > 0 is a parameter.

It can be showed that Ω has stricly positive eigenvalues. Let λ and v denote any eigenpair of Ω∗:

Ω ∗ v = λv

Ω ∗ v + (|λ1|+ u)v = λv + (|λ1|+ u)v

(Ω ∗+(|λ1|+ u)I)v = (λ+ |λ1|+ u)v

Ωv = (λ+ |λ1|+ u)v

The eigenvalues of Ω are equal to the eigenvalues of Ω∗ plus |λ1|. The smallest eigenvalue of Ω is
(λ1 + |λ1|+ u) > 0.

Considering the matrix to make positive definite is a precision matrix, its standardised inverse matrix
is the correlation matrix. In both cases, the magnitude of correlations is controlled by the constant
u.

If ev_xx=NULL, the constant u is chosen to maximise the Contrast of the corresponding correlation
matrix.

If ev_xx is provided, the constant u is chosen to generate a correlation matrix with required pro-
portion of explained variance by the first Principal Component, if possible. This proportion of
explained variance is equal to the largest eigenvalue of the correlation matrix divided by the sum of
its eigenvalues. If scale=FALSE, the covariance matrix is used instead of the correlation matrix for
faster computations.

Value

A list with:

omega positive definite matrix.

u value of the constant u.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

14 MakePositiveDefinite

Examples

Simulation of a symmetric matrix
p <- 5
set.seed(1)
omega <- matrix(rnorm(p * p), ncol = p)
omega <- omega + t(omega)
diag(omega) <- 0

Diagonal dominance maximising contrast
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "diagonally_dominant"
)
eigen(omega_pd$omega)$values # positive eigenvalues

Diagonal dominance with specific proportion of explained variance by PC1
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "diagonally_dominant",
ev_xx = 0.55

)
lambda_inv <- eigen(cov2cor(solve(omega_pd$omega)))$values
max(lambda_inv) / sum(lambda_inv) # expected ev

Version not scaled (using eigenvalues from the covariance)
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "diagonally_dominant",
ev_xx = 0.55, scale = FALSE

)
lambda_inv <- 1 / eigen(omega_pd$omega)$values
max(lambda_inv) / sum(lambda_inv) # expected ev

Non-negative eigenvalues maximising contrast
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "min_eigenvalue"
)
eigen(omega_pd$omega)$values # positive eigenvalues

Non-negative eigenvalues with specific proportion of explained variance by PC1
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "min_eigenvalue",
ev_xx = 0.7

)
lambda_inv <- eigen(cov2cor(solve(omega_pd$omega)))$values
max(lambda_inv) / sum(lambda_inv)

Version not scaled (using eigenvalues from the covariance)
omega_pd <- MakePositiveDefinite(omega,

pd_strategy = "min_eigenvalue",
ev_xx = 0.7, scale = FALSE

)
lambda_inv <- 1 / eigen(omega_pd$omega)$values
max(lambda_inv) / sum(lambda_inv)

MatchingArguments 15

MatchingArguments Matching arguments

Description

Returns a vector of overlapping character strings between extra_args and arguments from function
FUN. If FUN is taking ... as input, this function returns extra_args.

Usage

MatchingArguments(extra_args, FUN)

Arguments

extra_args vector of character strings.

FUN function.

Value

A vector of overlapping arguments.

Examples

MatchingArguments(
extra_args = list(Sigma = 1, test = FALSE),
FUN = MASS::mvrnorm

)

MinWithinProba Within-group probabilities for communities

Description

Computes the smallest within-group probabilities that can be used to simulate a graph where com-
munities can be expected for given probabilities of between-group probabilities and group sizes.

Usage

MinWithinProba(pk, nu_between = 0, nu_mat = NULL)

16 MinWithinProba

Arguments

pk vector of the number of variables per group in the simulated dataset. The number
of nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if theta is
not provided.

nu_between probability of having an edge between two nodes belonging to different groups,
as defined in pk. By default, the same density is used for within and between
blocks (nu_within=nu_between). Only used if length(pk)>1. Only used if
nu_mat is not provided.

nu_mat matrix of probabilities of having an edge between nodes belonging to a given
pair of node groups defined in pk. Only off-diagonal entries are used.

Details

The vector of within-group probabilities is the smallest one that can be used to generate an expected
total within degree Dw

k strictly higher than the expected total between degree Db
k for all communi-

ties k (see ExpectedCommunities). Namely, using the suggested within-group probabilities would
give expected Dw

k = Db
k + 1.

Value

A vector of within-group probabilities.

See Also

ExpectedCommunities, SimulateAdjacency, SimulateGraphical

Examples

Simulation parameters
pk <- rep(20, 4)
nu_between <- 0.1

Estimating smallest nu_within
nu_within <- MinWithinProba(pk = pk, nu_between = nu_between)

Expected metrics
ExpectedCommunities(

pk = pk,
nu_within = max(nu_within),
nu_between = nu_between

)

plot.roc_curve 17

plot.roc_curve Receiver Operating Characteristic (ROC) curve

Description

Plots the True Positive Rate (TPR) as a function of the False Positive Rate (FPR) for different
thresholds in predicted probabilities.

Usage

S3 method for class 'roc_curve'
plot(x, add = FALSE, ...)

Arguments

x output of ROC.

add logical indicating if the curve should be added to the current plot.

... additional plotting arguments (see par).

Value

A base plot.

See Also

ROC, Concordance

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(

n = 500, pk = 20,
family = "binomial", ev_xy = 0.8

)

Logistic regression
fitted <- glm(simul$ydata ~ simul$xdata, family = "binomial")$fitted.values

Constructing the ROC curve
roc <- ROC(predicted = fitted, observed = simul$ydata)
plot(roc)

18 ROC

ROC Receiver Operating Characteristic (ROC)

Description

Computes the True and False Positive Rates (TPR and FPR, respectively) and Area Under the
Curve (AUC) by comparing the true (observed) and predicted status using a range of thresholds on
the predicted score.

Usage

ROC(observed, predicted, n_thr = NULL)

Arguments

observed vector of binary outcomes.

predicted vector of predicted scores.

n_thr number of thresholds to use to construct the ROC curve. For faster computations
on large data, values below length(predicted)-1 can be used.

Value

A list with:

TPR True Positive Rate.

FPR False Positive Rate.

AUC Area Under the Curve.

See Also

Other goodness of fit functions: Concordance()

Examples

Data simulation
set.seed(1)
simul <- SimulateRegression(

n = 500, pk = 20,
family = "binomial", ev_xy = 0.8

)

Logistic regression
fitted <- glm(simul$ydata ~ simul$xdata, family = "binomial")$fitted.values

Constructing the ROC curve
roc <- ROC(predicted = fitted, observed = simul$ydata)
plot(roc)

SimulateAdjacency 19

SimulateAdjacency Simulation of undirected graph with block structure

Description

Simulates the adjacency matrix of an unweighted, undirected graph with no self-loops. If topology="random",
different densities in diagonal (nu_within) compared to off-diagonal (nu_between) blocks can be
used.

Usage

SimulateAdjacency(
pk = 10,
implementation = HugeAdjacency,
topology = "random",
nu_within = 0.1,
nu_between = 0,
nu_mat = NULL,
...

)

Arguments

pk vector of the number of variables per group in the simulated dataset. The number
of nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if theta is
not provided.

implementation function for simulation of the graph. By default, algorithms implemented in
huge.generator are used. Alternatively, a user-defined function can be used. It
must take pk, topology and nu as arguments and return a (sum(pk)*(sum(pk)))
binary and symmetric matrix for which diagonal entries are all equal to zero.
This function is only applied if theta is not provided.

topology topology of the simulated graph. If using implementation=HugeAdjacency,
possible values are listed for the argument graph of huge.generator. These
are: "random", "hub", "cluster", "band" and "scale-free".

nu_within probability of having an edge between two nodes belonging to the same group,
as defined in pk. If length(pk)=1, this is the expected density of the graph. If
implementation=HugeAdjacency, this argument is only used for topology="random"
or topology="cluster" (see argument prob in huge.generator). Only used
if nu_mat is not provided.

nu_between probability of having an edge between two nodes belonging to different groups,
as defined in pk. By default, the same density is used for within and between
blocks (nu_within=nu_between). Only used if length(pk)>1. Only used if
nu_mat is not provided.

20 SimulateAdjacency

nu_mat matrix of probabilities of having an edge between nodes belonging to a given
pair of node groups defined in pk.

... additional arguments passed to the graph simulation function provided in implementation.

Details

Random graphs are simulated using the Erdos-Renyi algorithm. Scale-free graphs are simulated
using a preferential attachment algorithm. More details are provided in huge.generator.

Value

A symmetric adjacency matrix encoding an unweighted, undirected graph with no self-loops, and
with different densities in diagonal compared to off-diagonal blocks.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

Jiang H, Fei X, Liu H, Roeder K, Lafferty J, Wasserman L, Li X, Zhao T (2021). huge: High-
Dimensional Undirected Graph Estimation. R package version 1.3.5, https://CRAN.R-project.
org/package=huge.

See Also

Other simulation functions: SimulateClustering(), SimulateComponents(), SimulateCorrelation(),
SimulateGraphical(), SimulateRegression(), SimulateStructural()

Examples

Simulation of a scale-free graph with 20 nodes
adjacency <- SimulateAdjacency(pk = 20, topology = "scale-free")
plot(adjacency)

Simulation of a random graph with three connected components
adjacency <- SimulateAdjacency(

pk = rep(10, 3),
nu_within = 0.7, nu_between = 0

)
plot(adjacency)

Simulation of a random graph with block structure
adjacency <- SimulateAdjacency(

pk = rep(10, 3),
nu_within = 0.7, nu_between = 0.03

)
plot(adjacency)

User-defined function for graph simulation
CentralNode <- function(pk, hub = 1) {

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521
https://CRAN.R-project.org/package=huge
https://CRAN.R-project.org/package=huge

SimulateClustering 21

theta <- matrix(0, nrow = sum(pk), ncol = sum(pk))
theta[hub,] <- 1
theta[, hub] <- 1
diag(theta) <- 0
return(theta)

}
simul <- SimulateAdjacency(pk = 10, implementation = CentralNode)
plot(simul) # star
simul <- SimulateAdjacency(pk = 10, implementation = CentralNode, hub = 2)
plot(simul) # variable 2 is the central node

SimulateClustering Simulation of data with underlying clusters

Description

Simulates mixture multivariate Normal data with clusters of items (rows) sharing similar profiles
along (a subset of) attributes (columns).

Usage

SimulateClustering(
n = c(10, 10),
pk = 10,
sigma = NULL,
theta_xc = NULL,
nu_xc = 1,
ev_xc = 0.5,
output_matrices = FALSE

)

Arguments

n vector of the number of items per cluster in the simulated data. The total number
of items is sum(n).

pk vector of the number of attributes in the simulated data.

sigma optional within-cluster correlation matrix.

theta_xc optional binary matrix encoding which attributes (columns) contribute to the
clustering structure between which clusters (rows). If theta_xc=NULL, variables
contributing to the clustering are sampled with probability nu_xc.

nu_xc expected proportion of variables contributing to the clustering over the total
number of variables. Only used if theta_xc is not provided.

ev_xc vector of expected proportion of variance in each of the contributing attributes
that can be explained by the clustering.

output_matrices

logical indicating if the cluster and attribute specific means and cluster specific
covariance matrix should be included in the output.

22 SimulateClustering

Details

The data is simulated from a Gaussian mixture where for all i ∈ 1, . . . , n:

Zii.i.d. M(1, κ)

Xi|Ziindep. Np(µZi ,Σ)

where M(1, κ) is the multinomial distribution with parameters 1 and κ, the vector of length G (the
number of clusters) with probabilities of belonging to each of the clusters, and Np(µZi ,Σ) is the
multivariate Normal distribution with a mean vector µZi that depends on the cluster membership
encoded in Zi and the same covariance matrix Σ within all G clusters.

The mean vectors µg, g ∈ 1, . . . G are simulated so that the desired proportion of variance in each
of attributes explained by the clustering (argument ev_xc) is reached.

The covariance matrix Σ is obtained by re-scaling a correlation matrix (argument sigma) to ensure
that the desired proportions of explained variances by the clustering (argument ev_xc) are reached.

Value

A list with:

data simulated data with sum(n) observation and sum(pk) variables

theta simulated (true) cluster membership.

theta_xc binary vector encoding variables contributing to the clustering structure.

ev vector of marginal expected proportions of explained variance for each variable.

mu_mixture simulated (true) cluster-specific means. Only returned if output_matrices=TRUE.

sigma simulated (true) covariance matrix. Only returned if output_matrices=TRUE.

See Also

MakePositiveDefinite

Other simulation functions: SimulateAdjacency(), SimulateComponents(), SimulateCorrelation(),
SimulateGraphical(), SimulateRegression(), SimulateStructural()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = rep(7, 4))

Example with 3 clusters

Data simulation
set.seed(1)
simul <- SimulateClustering(

n = c(10, 30, 15),
nu_xc = 1,
ev_xc = 0.5

)
print(simul)
plot(simul)

SimulateClustering 23

Checking the proportion of explained variance
x <- simul$data[, 1]
z <- as.factor(simul$theta)
summary(lm(x ~ z)) # R-squared

Example with 2 variables contributing to clustering

Data simulation
set.seed(1)
simul <- SimulateClustering(

n = c(20, 10, 15), pk = 10,
theta_xc = c(1, 1, rep(0, 8)),
ev_xc = 0.8

)
print(simul)
plot(simul)

Visualisation of the data
Heatmap(

mat = simul$data,
col = c("navy", "white", "red")

)
simul$ev # marginal proportions of explained variance

Visualisation along contributing variables
plot(simul$data[, 1:2], col = simul$theta, pch = 19)

Example with different levels of separation

Data simulation
set.seed(1)
simul <- SimulateClustering(

n = c(20, 10, 15), pk = 10,
theta_xc = c(1, 1, rep(0, 8)),
ev_xc = c(0.99, 0.5, rep(0, 8))

)

Visualisation along contributing variables
plot(simul$data[, 1:2], col = simul$theta, pch = 19)

Example with correlated contributors

Data simulation
pk <- 10
adjacency <- matrix(0, pk, pk)
adjacency[1, 2] <- adjacency[2, 1] <- 1
set.seed(1)
sigma <- SimulateCorrelation(

pk = pk,
theta = adjacency,

24 SimulateComponents

pd_strategy = "min_eigenvalue",
v_within = 0.6, v_sign = -1

)$sigma
simul <- SimulateClustering(

n = c(200, 100, 150), pk = pk, sigma = sigma,
theta_xc = c(1, 1, rep(0, 8)),
ev_xc = c(0.9, 0.8, rep(0, 8))

)

Visualisation along contributing variables
plot(simul$data[, 1:2], col = simul$theta, pch = 19)

Checking marginal proportions of explained variance
mymodel <- lm(simul$data[, 1] ~ as.factor(simul$theta))
summary(mymodel)$r.squared
mymodel <- lm(simul$data[, 2] ~ as.factor(simul$theta))
summary(mymodel)$r.squared

par(oldpar)

SimulateComponents Data simulation for sparse Principal Component Analysis

Description

Simulates data with with independent groups of variables.

Usage

SimulateComponents(
n = 100,
pk = c(10, 10),
adjacency = NULL,
nu_within = 1,
v_within = c(0.5, 1),
v_sign = -1,
continuous = TRUE,
pd_strategy = "min_eigenvalue",
ev_xx = 0.1,
scale_ev = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25,
scale = TRUE,
output_matrices = FALSE

)

SimulateComponents 25

Arguments

n number of observations in the simulated dataset.

pk vector of the number of variables per group in the simulated dataset. The number
of nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if theta is
not provided.

adjacency optional binary and symmetric adjacency matrix encoding the conditional graph
structure between observations. The clusters encoded in this argument must be
in line with those indicated in pk. Edges in off-diagonal blocks are not allowed
to ensure that the simulated orthogonal components are sparse. Corresponding
entries in the precision matrix will be set to zero.

nu_within probability of having an edge between two nodes belonging to the same group,
as defined in pk. If length(pk)=1, this is the expected density of the graph. If
implementation=HugeAdjacency, this argument is only used for topology="random"
or topology="cluster" (see argument prob in huge.generator). Only used
if nu_mat is not provided.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (if continuous=TRUE) or from proposed
values in v_within (diagonal blocks) or v_between (off-diagonal blocks) (if
continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale_ev logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale_ev=TRUE) or covariance (scale_ev=FALSE)
matrix. If scale_ev=TRUE, the correlation matrix is used as parameter of the
multivariate normal distribution.

26 SimulateComponents

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.
scale logical indicating if the true mean is zero and true variance is one for all simu-

lated variables. The observed mean and variance may be slightly off by chance.
output_matrices

logical indicating if the true precision and (partial) correlation matrices should
be included in the output.

Details

The data is simulated from a centered multivariate Normal distribution with a block-diagonal co-
variance matrix. Independence between variables from the different blocks ensures that sparse
orthogonal components can be generated.

The block-diagonal partial correlation matrix is obtained using a graph structure encoding the con-
ditional independence between variables. The orthogonal latent variables are obtained from eigen-
decomposition of the true correlation matrix. The sparse eigenvectors contain the weights of the
linear combination of variables to construct the latent variable (loadings coefficients). The propor-
tion of explained variance by each of the latent variable is computed from eigenvalues.

As latent variables are defined from the true correlation matrix, the number of sparse orthogonal
components is not limited by the number of observations and is equal to sum(pk).

Value

A list with:

data simulated data with n observation and sum(pk) variables.
loadings loadings coefficients of the orthogonal latent variables (principal components).
theta support of the loadings coefficients.
ev proportion of explained variance by each of the orthogonal latent variables.
adjacency adjacency matrix of the simulated graph.
omega simulated (true) precision matrix. Only returned if output_matrices=TRUE.
phi simulated (true) partial correlation matrix. Only returned if output_matrices=TRUE.
C simulated (true) correlation matrix. Only returned if output_matrices=TRUE.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

See Also

MakePositiveDefinite

Other simulation functions: SimulateAdjacency(), SimulateClustering(), SimulateCorrelation(),
SimulateGraphical(), SimulateRegression(), SimulateStructural()

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

SimulateCorrelation 27

Examples

Simulation of 3 components with high e.v.
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4), ev_xx = 0.4)
print(simul)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

Simulation of 3 components with moderate e.v.
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4), ev_xx = 0.25)
print(simul)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

Simulation of multiple components with low e.v.
pk <- sample(3:10, size = 5, replace = TRUE)
simul <- SimulateComponents(

pk = pk,
nu_within = 0.3, v_within = c(0.8, 0.5), v_sign = -1, ev_xx = 0.1

)
plot(simul)
plot(cumsum(simul$ev), ylim = c(0, 1), las = 1)

SimulateCorrelation Simulation of a correlation matrix

Description

Simulates a correlation matrix. This is done in three steps with (i) the simulation of an undirected
graph encoding conditional independence, (ii) the simulation of a (positive definite) precision matrix
given the graph, and (iii) the re-scaling of the inverse of the precision matrix.

Usage

SimulateCorrelation(
pk = 10,
theta = NULL,
implementation = HugeAdjacency,
topology = "random",
nu_within = 0.1,
nu_between = NULL,
nu_mat = NULL,
v_within = c(0.5, 1),
v_between = c(0.1, 0.2),
v_sign = c(-1, 1),
continuous = TRUE,

28 SimulateCorrelation

pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale_ev = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25,
output_matrices = FALSE,
...

)

Arguments

pk vector of the number of variables per group in the simulated dataset. The number
of nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if theta is
not provided.

theta optional binary and symmetric adjacency matrix encoding the conditional inde-
pendence structure.

implementation function for simulation of the graph. By default, algorithms implemented in
huge.generator are used. Alternatively, a user-defined function can be used. It
must take pk, topology and nu as arguments and return a (sum(pk)*(sum(pk)))
binary and symmetric matrix for which diagonal entries are all equal to zero.
This function is only applied if theta is not provided.

topology topology of the simulated graph. If using implementation=HugeAdjacency,
possible values are listed for the argument graph of huge.generator. These
are: "random", "hub", "cluster", "band" and "scale-free".

nu_within probability of having an edge between two nodes belonging to the same group,
as defined in pk. If length(pk)=1, this is the expected density of the graph. If
implementation=HugeAdjacency, this argument is only used for topology="random"
or topology="cluster" (see argument prob in huge.generator). Only used
if nu_mat is not provided.

nu_between probability of having an edge between two nodes belonging to different groups,
as defined in pk. By default, the same density is used for within and between
blocks (nu_within=nu_between). Only used if length(pk)>1. Only used if
nu_mat is not provided.

nu_mat matrix of probabilities of having an edge between nodes belonging to a given
pair of node groups defined in pk.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_between vector defining the (range of) nonzero entries in the off-diagonal blocks of the
precision matrix. This argument is the same as v_within but for off-diagonal
blocks. It is only used if length(pk)>1.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

SimulateCorrelation 29

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (if continuous=TRUE) or from proposed
values in v_within (diagonal blocks) or v_between (off-diagonal blocks) (if
continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale_ev logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale_ev=TRUE) or covariance (scale_ev=FALSE)
matrix. If scale_ev=TRUE, the correlation matrix is used as parameter of the
multivariate normal distribution.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.
output_matrices

logical indicating if the true precision and (partial) correlation matrices should
be included in the output.

... additional arguments passed to the graph simulation function provided in implementation.

Details

In Step 1, the conditional independence structure between the variables is simulated. This is done
using SimulateAdjacency.

In Step 2, the precision matrix is simulated using SimulatePrecision so that (i) its nonzero
entries correspond to edges in the graph simulated in Step 1, and (ii) it is positive definite (see
MakePositiveDefinite).

In Step 3, the covariance is calculated as the inverse of the precision matrix. The correlation matrix
is then obtained by re-scaling the covariance matrix (see cov2cor).

Value

A list with:

sigma simulated correlation matrix.

omega simulated precision matrix. Only returned if output_matrices=TRUE.

theta adjacency matrix of the simulated graph. Only returned if output_matrices=TRUE.

30 SimulateCorrelation

See Also

SimulatePrecision, MakePositiveDefinite

Other simulation functions: SimulateAdjacency(), SimulateClustering(), SimulateComponents(),
SimulateGraphical(), SimulateRegression(), SimulateStructural()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = rep(7, 4))

Random correlation matrix
set.seed(1)
simul <- SimulateCorrelation(pk = 10)
Heatmap(simul$sigma,

col = c("navy", "white", "darkred"),
text = TRUE, format = "f", digits = 2,
legend_range = c(-1, 1)

)

Correlation matrix with homogeneous block structure
set.seed(1)
simul <- SimulateCorrelation(

pk = c(5, 5),
nu_within = 1,
nu_between = 0,
v_sign = -1,
v_within = 1

)
Heatmap(simul$sigma,

col = c("navy", "white", "darkred"),
text = TRUE, format = "f", digits = 2,
legend_range = c(-1, 1)

)

Correlation matrix with heterogeneous block structure
set.seed(1)
simul <- SimulateCorrelation(

pk = c(5, 5),
nu_within = 0.5,
nu_between = 0,
v_sign = -1

)
Heatmap(simul$sigma,

col = c("navy", "white", "darkred"),
text = TRUE, format = "f", digits = 2,
legend_range = c(-1, 1)

)

par(oldpar)

SimulateGraphical 31

SimulateGraphical Data simulation for Gaussian Graphical Modelling

Description

Simulates data from a Gaussian Graphical Model (GGM).

Usage

SimulateGraphical(
n = 100,
pk = 10,
theta = NULL,
implementation = HugeAdjacency,
topology = "random",
nu_within = 0.1,
nu_between = NULL,
nu_mat = NULL,
v_within = c(0.5, 1),
v_between = c(0.1, 0.2),
v_sign = c(-1, 1),
continuous = TRUE,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale_ev = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25,
scale = TRUE,
output_matrices = FALSE,
...

)

Arguments

n number of observations in the simulated dataset.
pk vector of the number of variables per group in the simulated dataset. The number

of nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if theta is
not provided.

theta optional binary and symmetric adjacency matrix encoding the conditional inde-
pendence structure.

implementation function for simulation of the graph. By default, algorithms implemented in
huge.generator are used. Alternatively, a user-defined function can be used. It
must take pk, topology and nu as arguments and return a (sum(pk)*(sum(pk)))
binary and symmetric matrix for which diagonal entries are all equal to zero.
This function is only applied if theta is not provided.

32 SimulateGraphical

topology topology of the simulated graph. If using implementation=HugeAdjacency,
possible values are listed for the argument graph of huge.generator. These
are: "random", "hub", "cluster", "band" and "scale-free".

nu_within probability of having an edge between two nodes belonging to the same group,
as defined in pk. If length(pk)=1, this is the expected density of the graph. If
implementation=HugeAdjacency, this argument is only used for topology="random"
or topology="cluster" (see argument prob in huge.generator). Only used
if nu_mat is not provided.

nu_between probability of having an edge between two nodes belonging to different groups,
as defined in pk. By default, the same density is used for within and between
blocks (nu_within=nu_between). Only used if length(pk)>1. Only used if
nu_mat is not provided.

nu_mat matrix of probabilities of having an edge between nodes belonging to a given
pair of node groups defined in pk.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_between vector defining the (range of) nonzero entries in the off-diagonal blocks of the
precision matrix. This argument is the same as v_within but for off-diagonal
blocks. It is only used if length(pk)>1.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (if continuous=TRUE) or from proposed
values in v_within (diagonal blocks) or v_between (off-diagonal blocks) (if
continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix
divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale_ev logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale_ev=TRUE) or covariance (scale_ev=FALSE)
matrix. If scale_ev=TRUE, the correlation matrix is used as parameter of the
multivariate normal distribution.

SimulateGraphical 33

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

scale logical indicating if the true mean is zero and true variance is one for all simu-
lated variables. The observed mean and variance may be slightly off by chance.

output_matrices

logical indicating if the true precision and (partial) correlation matrices should
be included in the output.

... additional arguments passed to the graph simulation function provided in implementation.

Details

The simulation is done in two steps with (i) generation of a graph, and (ii) sampling from multivari-
ate Normal distribution for which nonzero entries in the partial correlation matrix correspond to the
edges of the simulated graph. This procedure ensures that the conditional independence structure
between the variables corresponds to the simulated graph.

Step 1 is done using SimulateAdjacency.

In Step 2, the precision matrix (inverse of the covariance matrix) is simulated using SimulatePrecision
so that (i) its nonzero entries correspond to edges in the graph simulated in Step 1, and (ii) it is
positive definite (see MakePositiveDefinite). The inverse of the precision matrix is used as co-
variance matrix to simulate data from a multivariate Normal distribution.

The outputs of this function can be used to evaluate the ability of a graphical model to recover the
conditional independence structure.

Value

A list with:

data simulated data with n observation and sum(pk) variables.

theta adjacency matrix of the simulated graph.

omega simulated (true) precision matrix. Only returned if output_matrices=TRUE.

phi simulated (true) partial correlation matrix. Only returned if output_matrices=TRUE.

sigma simulated (true) covariance matrix. Only returned if output_matrices=TRUE.

u value of the constant u used for the simulation of omega. Only returned if
output_matrices=TRUE.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

34 SimulateGraphical

See Also

SimulatePrecision, MakePositiveDefinite

Other simulation functions: SimulateAdjacency(), SimulateClustering(), SimulateComponents(),
SimulateCorrelation(), SimulateRegression(), SimulateStructural()

Examples

oldpar <- par(no.readonly = TRUE)
par(mar = rep(7, 4))

Simulation of random graph with 50 nodes
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 50, topology = "random", nu_within = 0.05)
print(simul)
plot(simul)

Simulation of scale-free graph with 20 nodes
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, topology = "scale-free")
plot(simul)

Extracting true precision/correlation matrices
set.seed(1)
simul <- SimulateGraphical(

n = 100, pk = 20,
topology = "scale-free", output_matrices = TRUE

)
str(simul)

Simulation of multi-block data
set.seed(1)
pk <- c(20, 30)
simul <- SimulateGraphical(

n = 100, pk = pk,
pd_strategy = "min_eigenvalue"

)
mycor <- cor(simul$data)
Heatmap(mycor,

col = c("darkblue", "white", "firebrick3"),
legend_range = c(-1, 1), legend_length = 50,
legend = FALSE, axes = FALSE

)
for (i in 1:2) {

axis(side = i, at = c(0.5, pk[1] - 0.5), labels = NA)
axis(
side = i, at = mean(c(0.5, pk[1] - 0.5)),
labels = ifelse(i == 1, yes = "Group 1", no = "Group 2"),
tick = FALSE, cex.axis = 1.5

)
axis(side = i, at = c(pk[1] + 0.5, sum(pk) - 0.5), labels = NA)
axis(

side = i, at = mean(c(pk[1] + 0.5, sum(pk) - 0.5)),

SimulatePrecision 35

labels = ifelse(i == 1, yes = "Group 2", no = "Group 1"),
tick = FALSE, cex.axis = 1.5

)
}

User-defined function for graph simulation
CentralNode <- function(pk, hub = 1) {

theta <- matrix(0, nrow = sum(pk), ncol = sum(pk))
theta[hub,] <- 1
theta[, hub] <- 1
diag(theta) <- 0
return(theta)

}
simul <- SimulateGraphical(n = 100, pk = 10, implementation = CentralNode)
plot(simul) # star
simul <- SimulateGraphical(n = 100, pk = 10, implementation = CentralNode, hub = 2)
plot(simul) # variable 2 is the central node

User-defined adjacency matrix
mytheta <- matrix(c(

0, 1, 1, 0,
1, 0, 0, 0,
1, 0, 0, 1,
0, 0, 1, 0

), ncol = 4, byrow = TRUE)
simul <- SimulateGraphical(n = 100, theta = mytheta)
plot(simul)

User-defined adjacency and block structure
simul <- SimulateGraphical(n = 100, theta = mytheta, pk = c(2, 2))
mycor <- cor(simul$data)
Heatmap(mycor,

col = c("darkblue", "white", "firebrick3"),
legend_range = c(-1, 1), legend_length = 50, legend = FALSE

)

par(oldpar)

SimulatePrecision Simulation of precision matrix

Description

Simulates a sparse precision matrix from a binary adjacency matrix theta encoding conditional
independence in a Gaussian Graphical Model.

Usage

SimulatePrecision(

36 SimulatePrecision

pk = NULL,
theta,
v_within = c(0.5, 1),
v_between = c(0, 0.1),
v_sign = c(-1, 1),
continuous = TRUE,
pd_strategy = "diagonally_dominant",
ev_xx = NULL,
scale = TRUE,
u_list = c(1e-10, 1),
tol = .Machine$double.eps^0.25

)

Arguments

pk vector of the number of variables per group in the simulated dataset. The number
of nodes in the simulated graph is sum(pk). With multiple groups, the simulated
(partial) correlation matrix has a block structure, where blocks arise from the
integration of the length(pk) groups. This argument is only used if theta is
not provided.

theta binary and symmetric adjacency matrix encoding the conditional independence
structure.

v_within vector defining the (range of) nonzero entries in the diagonal blocks of the preci-
sion matrix. These values must be between -1 and 1 if pd_strategy="min_eigenvalue".
If continuous=FALSE, v_within is the set of possible precision values. If
continuous=TRUE, v_within is the range of possible precision values.

v_between vector defining the (range of) nonzero entries in the off-diagonal blocks of the
precision matrix. This argument is the same as v_within but for off-diagonal
blocks. It is only used if length(pk)>1.

v_sign vector of possible signs for precision matrix entries. Possible inputs are: -1 for
positive partial correlations, 1 for negative partial correlations, or c(-1, 1) for
both positive and negative partial correlations.

continuous logical indicating whether to sample precision values from a uniform distribu-
tion between the minimum and maximum values in v_within (diagonal blocks)
or v_between (off-diagonal blocks) (if continuous=TRUE) or from proposed
values in v_within (diagonal blocks) or v_between (off-diagonal blocks) (if
continuous=FALSE).

pd_strategy method to ensure that the generated precision matrix is positive definite (and
hence can be a covariance matrix). If pd_strategy="diagonally_dominant",
the precision matrix is made diagonally dominant by setting the diagonal entries
to the sum of absolute values on the corresponding row and a constant u. If
pd_strategy="min_eigenvalue", diagonal entries are set to the sum of the
absolute value of the smallest eigenvalue of the precision matrix with zeros on
the diagonal and a constant u.

ev_xx expected proportion of explained variance by the first Principal Component
(PC1) of a Principal Component Analysis. This is the largest eigenvalue of
the correlation (if scale_ev=TRUE) or covariance (if scale_ev=FALSE) matrix

SimulatePrecision 37

divided by the sum of eigenvalues. If ev_xx=NULL (the default), the constant u
is chosen by maximising the contrast of the correlation matrix.

scale logical indicating if the proportion of explained variance by PC1 should be com-
puted from the correlation (scale=TRUE) or covariance (scale=FALSE) matrix.

u_list vector with two numeric values defining the range of values to explore for con-
stant u.

tol accuracy for the search of parameter u as defined in optimise.

Details

Entries that are equal to zero in the adjacency matrix theta are also equal to zero in the generated
precision matrix. These zero entries indicate conditional independence between the corresponding
pair of variables (see SimulateGraphical).

Argument pk can be specified to create groups of variables and allow for nonzero precision entries
to be sampled from different distributions between two variables belonging to the same group or to
different groups.

If continuous=FALSE, nonzero off-diagonal entries of the precision matrix are sampled from a dis-
crete uniform distribution taking values in v_within (for entries in the diagonal block) or v_between
(for entries in off-diagonal blocks). If continuous=TRUE, nonzero off-diagonal entries are sampled
from a continuous uniform distribution taking values in the range given by v_within or v_between.

Diagonal entries of the precision matrix are defined to ensure positive definiteness as described in
MakePositiveDefinite.

Value

A list with:

omega true simulated precision matrix.

u value of the constant u used to ensure that omega is positive definite.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

See Also

SimulateGraphical, MakePositiveDefinite

Examples

Simulation of an adjacency matrix
theta <- SimulateAdjacency(pk = c(5, 5), nu_within = 0.7)
print(theta)

Simulation of a precision matrix maximising the contrast

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

38 SimulateRegression

simul <- SimulatePrecision(theta = theta)
print(simul$omega)

Simulation of a precision matrix with specific ev by PC1
simul <- SimulatePrecision(

theta = theta,
pd_strategy = "min_eigenvalue",
ev_xx = 0.3, scale = TRUE

)
print(simul$omega)

SimulateRegression Data simulation for multivariate regression

Description

Simulates data with outcome(s) and predictors, where only a subset of the predictors actually con-
tributes to the definition of the outcome(s).

Usage

SimulateRegression(
n = 100,
pk = 10,
xdata = NULL,
family = "gaussian",
q = 1,
theta = NULL,
nu_xy = 0.2,
beta_abs = c(0.1, 1),
beta_sign = c(-1, 1),
continuous = TRUE,
ev_xy = 0.7

)

Arguments

n number of observations in the simulated dataset. Not used if xdata is provided.

pk number of predictor variables. A subset of these variables contribute to the
outcome definition (see argument nu_xy). Not used if xdata is provided.

xdata optional data matrix for the predictors with variables as columns and observa-
tions as rows. A subset of these variables contribute to the outcome definition
(see argument nu_xy).

family type of regression model. Possible values include "gaussian" for continuous
outcome(s) or "binomial" for binary outcome(s).

q number of outcome variables.

SimulateRegression 39

theta binary matrix with as many rows as predictors and as many columns as out-
comes. A nonzero entry on row i and column j indicates that predictor i con-
tributes to the definition of outcome j.

nu_xy vector of length q with expected proportion of predictors contributing to the
definition of each of the q outcomes.

beta_abs vector defining the range of nonzero regression coefficients in absolute val-
ues. If continuous=FALSE, beta_abs is the set of possible precision values.
If continuous=TRUE, beta_abs is the range of possible precision values. Note
that regression coefficients are re-scaled if family="binomial" to ensure that
the desired concordance statistic can be achieved (see argument ev_xy) so they
may not be in this range.

beta_sign vector of possible signs for regression coefficients. Possible inputs are: 1 for
positive coefficients, -1 for negative coefficients, or c(-1, 1) for both positive
and negative coefficients.

continuous logical indicating whether to sample regression coefficients from a uniform dis-
tribution between the minimum and maximum values in beta_abs (if continuous=TRUE)
or from proposed values in beta_abs (if continuous=FALSE).

ev_xy vector of length q with expected goodness of fit measures for each of the q
outcomes. If family="gaussian", the vector contains expected proportions of
variance in each of the q outcomes that can be explained by the predictors. If
family="binomial", the vector contains expected concordance statistics (i.e.
area under the ROC curve) given the true probabilities.

Value

A list with:

xdata input or simulated predictor data.

ydata simulated outcome data.

beta matrix of true beta coefficients used to generate outcomes in ydata from predic-
tors in xdata.

theta binary matrix indicating the predictors from xdata contributing to the definition
of each of the outcome variables in ydata.

References

Bodinier B, Filippi S, Nost TH, Chiquet J, Chadeau-Hyam M (2021). “Automated calibration for
stability selection in penalised regression and graphical models: a multi-OMICs network appli-
cation exploring the molecular response to tobacco smoking.” https://arxiv.org/abs/2106.
02521.

See Also

Other simulation functions: SimulateAdjacency(), SimulateClustering(), SimulateComponents(),
SimulateCorrelation(), SimulateGraphical(), SimulateStructural()

https://arxiv.org/abs/2106.02521
https://arxiv.org/abs/2106.02521

40 SimulateRegression

Examples

Independent predictors

Univariate continuous outcome
set.seed(1)
simul <- SimulateRegression(pk = 15)
summary(simul)

Univariate binary outcome
set.seed(1)
simul <- SimulateRegression(pk = 15, family = "binomial")
table(simul$ydata)

Multiple continuous outcomes
set.seed(1)
simul <- SimulateRegression(pk = 15, q = 3)
summary(simul)

Blocks of correlated predictors

Simulation of predictor data
set.seed(1)
xsimul <- SimulateGraphical(pk = rep(5, 3), nu_within = 0.8, nu_between = 0, v_sign = -1)
Heatmap(cor(xsimul$data),

legend_range = c(-1, 1),
col = c("navy", "white", "darkred")

)

Simulation of outcome data
simul <- SimulateRegression(xdata = xsimul$data)
print(simul)
summary(simul)

Choosing expected proportion of explained variance

Data simulation
set.seed(1)
simul <- SimulateRegression(n = 1000, pk = 15, q = 3, ev_xy = c(0.9, 0.5, 0.2))
summary(simul)

Comparing with estimated proportion of explained variance
summary(lm(simul$ydata[, 1] ~ simul$xdata))
summary(lm(simul$ydata[, 2] ~ simul$xdata))
summary(lm(simul$ydata[, 3] ~ simul$xdata))

Choosing expected concordance (AUC)

Data simulation
set.seed(1)

SimulateStructural 41

simul <- SimulateRegression(
n = 500, pk = 10,
family = "binomial", ev_xy = 0.9

)

Comparing with estimated concordance
fitted <- glm(simul$ydata ~ simul$xdata,

family = "binomial"
)$fitted.values
Concordance(observed = simul$ydata, predicted = fitted)

SimulateStructural Data simulation for Structural Causal Modelling

Description

Simulates data from a multivariate Normal distribution where relationships between the variables
correspond to a Structural Causal Model (SCM). To ensure that the generated SCM is identifiable,
the nodes are organised by layers, with no causal effects within layers.

Usage

SimulateStructural(
n = 100,
pk = c(5, 5, 5),
theta = NULL,
n_manifest = NULL,
nu_between = 0.5,
v_between = c(0.5, 1),
v_sign = c(-1, 1),
continuous = TRUE,
ev = 0.5,
ev_manifest = 0.8,
output_matrices = FALSE

)

Arguments

n number of observations in the simulated dataset.

pk vector of the number of (latent) variables per layer.

theta optional binary adjacency matrix of the Directed Acyclic Graph (DAG) of causal
relationships. This DAG must have a structure with layers so that a variable can
only be a parent of variable in one of the following layers (see LayeredDAG for
examples). The layers must be provided in pk.

42 SimulateStructural

n_manifest vector of the number of manifest (observed) variables measuring each of the la-
tent variables. If n_manifest=NULL, there are sum(pk) manifest variables and
no latent variables. Otherwise, there are sum(pk) latent variables and sum(n_manifest)
manifest variables. All entries of n_manifest must be strictly positive.

nu_between probability of having an edge between two nodes belonging to different layers,
as defined in pk. If length(pk)=1, this is the expected density of the graph.

v_between vector defining the (range of) nonzero path coefficients. If continuous=FALSE,
v_between is the set of possible values. If continuous=TRUE, v_between is the
range of possible values.

v_sign vector of possible signs for path coefficients. Possible inputs are: 1 for posi-
tive coefficients, -1 for negative coefficients, or c(-1, 1) for both positive and
negative coefficients.

continuous logical indicating whether to sample path coefficients from a uniform distribu-
tion between the minimum and maximum values in v_between (if continuous=FALSE)
or from proposed values in v_between (if continuous=FALSE).

ev vector of proportions of variance in each of the (latent) variables that can be
explained by its parents. If there are no latent variables (if n_manifest=NULL),
these are the proportions of explained variances in the manifest variables. Oth-
erwise (if n_manifest is provided), these are the proportions of explained vari-
ances in the latent variables.

ev_manifest vector of proportions of variance in each of the manifest variable that can be
explained by its latent parent. Only used if n_manifest is provided.

output_matrices

logical indicating if the true path coefficients, residual variances, and precision
and (partial) correlation matrices should be included in the output.

Value

A list with:

data simulated data with n observations for manifest variables.
theta adjacency matrix of the simulated Directed Acyclic Graph encoding causal re-

lationships.
Amat simulated (true) asymmetric matrix A in RAM notation. Only returned if output_matrices=TRUE.
Smat simulated (true) symmetric matrix S in RAM notation. Only returned if output_matrices=TRUE.
Fmat simulated (true) filter matrix F in RAM notation. Only returned if output_matrices=TRUE.
sigma simulated (true) covariance matrix. Only returned if output_matrices=TRUE.

References

Jacobucci R, Grimm KJ, McArdle JJ (2016). “Regularized structural equation modeling.” Struc-
tural equation modeling: a multidisciplinary journal, 23(4), 555–566. doi:10.1080/10705511.2016.1154793.

See Also

SimulatePrecision, MakePositiveDefinite, Contrast
Other simulation functions: SimulateAdjacency(), SimulateClustering(), SimulateComponents(),
SimulateCorrelation(), SimulateGraphical(), SimulateRegression()

https://doi.org/10.1080/10705511.2016.1154793

SimulateStructural 43

Examples

Simulation of a layered SCM
set.seed(1)
pk <- c(3, 5, 4)
simul <- SimulateStructural(n = 100, pk = pk)
print(simul)
summary(simul)
plot(simul)

Choosing the proportions of explained variances for endogenous variables
set.seed(1)
simul <- SimulateStructural(

n = 1000,
pk = c(2, 3),
nu_between = 1,
ev = c(NA, NA, 0.5, 0.7, 0.9),
output_matrices = TRUE

)

Checking expected proportions of explained variances
1 - simul$Smat["x3", "x3"] / simul$sigma["x3", "x3"]
1 - simul$Smat["x4", "x4"] / simul$sigma["x4", "x4"]
1 - simul$Smat["x5", "x5"] / simul$sigma["x5", "x5"]

Checking observed proportions of explained variances (R-squared)
summary(lm(simul$data[, 3] ~ simul$data[, which(simul$theta[, 3] != 0)]))
summary(lm(simul$data[, 4] ~ simul$data[, which(simul$theta[, 4] != 0)]))
summary(lm(simul$data[, 5] ~ simul$data[, which(simul$theta[, 5] != 0)]))

Simulation including latent and manifest variables
set.seed(1)
simul <- SimulateStructural(

n = 100,
pk = c(2, 3),
n_manifest = c(2, 3, 2, 1, 2)

)
plot(simul)

Showing manifest variables in red
if (requireNamespace("igraph", quietly = TRUE)) {

mygraph <- plot(simul)
ids <- which(igraph::V(mygraph)$name %in% colnames(simul$data))
igraph::V(mygraph)$color[ids] <- "red"
igraph::V(mygraph)$frame.color[ids] <- "red"
plot(mygraph)

}

Choosing proportions of explained variances for latent and manifest variables
set.seed(1)
simul <- SimulateStructural(

n = 100,
pk = c(3, 2),

44 SimulateStructural

n_manifest = c(2, 3, 2, 1, 2),
ev = c(NA, NA, NA, 0.7, 0.9),
ev_manifest = 0.8,
output_matrices = TRUE

)
plot(simul)

Checking expected proportions of explained variances
(simul$sigma_full["f4", "f4"] - simul$Smat["f4", "f4"]) / simul$sigma_full["f4", "f4"]
(simul$sigma_full["f5", "f5"] - simul$Smat["f5", "f5"]) / simul$sigma_full["f5", "f5"]
(simul$sigma_full["x1", "x1"] - simul$Smat["x1", "x1"]) / simul$sigma_full["x1", "x1"]

Index

∗ block matrix functions
BlockDiagonal, 2
BlockMatrix, 3
BlockStructure, 4

∗ goodness of fit functions
Concordance, 4
ROC, 18

∗ simulation functions
SimulateAdjacency, 19
SimulateClustering, 21
SimulateComponents, 24
SimulateCorrelation, 27
SimulateGraphical, 31
SimulateRegression, 38
SimulateStructural, 41

BlockDiagonal, 2, 3, 4
BlockMatrix, 2, 3, 4
BlockStructure, 2, 3, 4

Concordance, 4, 8, 17, 18
Contrast, 5, 13, 42
cov2cor, 29

ExpectedCommunities, 6, 16
ExpectedConcordance, 8

formatC, 10

Heatmap, 9
huge.generator, 6, 19, 20, 25, 28, 31, 32

LayeredDAG, 11, 41

MakePositiveDefinite, 12, 22, 26, 29, 30,
33, 34, 37, 42

MatchingArguments, 15
MinWithinProba, 7, 15
modularity, 7

optimise, 12, 26, 29, 33, 37

par, 10, 17
plot.roc_curve, 17

ROC, 5, 17, 18

SimulateAdjacency, 7, 16, 19, 22, 26, 29, 30,
33, 34, 39, 42

SimulateClustering, 20, 21, 26, 30, 34, 39,
42

SimulateComponents, 20, 22, 24, 30, 34, 39,
42

SimulateCorrelation, 20, 22, 26, 27, 34, 39,
42

SimulateGraphical, 7, 16, 20, 22, 26, 30, 31,
37, 39, 42

SimulatePrecision, 29, 30, 33, 34, 35, 42
SimulateRegression, 20, 22, 26, 30, 34, 38,

42
SimulateStructural, 20, 22, 26, 30, 34, 39,

41

45

	BlockDiagonal
	BlockMatrix
	BlockStructure
	Concordance
	Contrast
	ExpectedCommunities
	ExpectedConcordance
	Heatmap
	LayeredDAG
	MakePositiveDefinite
	MatchingArguments
	MinWithinProba
	plot.roc_curve
	ROC
	SimulateAdjacency
	SimulateClustering
	SimulateComponents
	SimulateCorrelation
	SimulateGraphical
	SimulatePrecision
	SimulateRegression
	SimulateStructural
	Index

